List of integrals of trigonometric functions: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
Integral over a full circle
Fixing formatting after I had corrected the parsing error.
Line 1: Line 1:
The following is a list of [[indefinite integral]]s ([[antiderivative]]s) of expressions involving the [[inverse hyperbolic function]]s. For a complete list of integral formulas, see [[lists of integrals]].
Historical past of the of the author is probably Gabrielle Lattimer. Fish [http://search.un.org/search?ie=utf8&site=un_org&output=xml_no_dtd&client=UN_Website_en&num=10&lr=lang_en&proxystylesheet=UN_Website_en&oe=utf8&q=dealing&Submit=Go dealing] with acne is something her husband doesn't really like but she does. Idaho is where her home happens to be and she will usually never move. Software happening is what she does but she's always wanted her own business. She are running and maintaining any kind of blog here: http://[http://Www.Bbc.Co.uk/search/?q=prometeu.net prometeu.net]<br><br>Also visit my blog; hack clash of clans ([http://prometeu.net look at this web-site])
 
* In all formulas the constant ''a'' is assumed to be nonzero, and ''C'' denotes the [[constant of integration]].
* For each inverse hyperbolic integration formula below there is a corresponding formula in the [[list of integrals of inverse trigonometric functions]].
 
== Inverse hyperbolic sine integration formulas ==
 
:<math>\int\operatorname{arsinh}(a\,x)\,dx=
  x\,\operatorname{arsinh}(a\,x)-\frac{\sqrt{a^2\,x^2+1}}{a}+C</math>
 
:<math>\int x\,\operatorname{arsinh}(a\,x)dx=
  \frac{x^2\,\operatorname{arsinh}(a\,x)}{2}+
  \frac{\operatorname{arsinh}(a\,x)}{4\,a^2}-
  \frac{x \sqrt{a^2\,x^2+1}}{4\,a}+C</math>
 
:<math>\int x^2\,\operatorname{arsinh}(a\,x)dx=
  \frac{x^3\,\operatorname{arsinh}(a\,x)}{3}-
  \frac{\left(a^2\,x^2-2\right)\sqrt{a^2\,x^2+1}}{9\,a^3}+C</math>
 
:<math>\int x^m\,\operatorname{arsinh}(a\,x)dx=
  \frac{x^{m+1}\,\operatorname{arsinh}(a\,x)}{m+1}\,-\,
  \frac{a}{m+1}\int\frac{x^{m+1}}{\sqrt{a^2\,x^2+1}}\,dx\quad(m\ne-1)</math>
 
:<math>\int\operatorname{arsinh}(a\,x)^2\,dx=
  2\,x+x\,\operatorname{arsinh}(a\,x)^2-
  \frac{2\,\sqrt{a^2\,x^2+1}\,\operatorname{arsinh}(a\,x)}{a}+C</math>
 
:<math>\int\operatorname{arsinh}(a\,x)^n\,dx=
  x\,\operatorname{arsinh}(a\,x)^n\,-\,
  \frac{n\,\sqrt{a^2\,x^2+1}\,\operatorname{arsinh}(a\,x)^{n-1}}{a}\,+\,
  n\,(n-1)\int\operatorname{arsinh}(a\,x)^{n-2}\,dx</math>
 
:<math>\int\operatorname{arsinh}(a\,x)^n\,dx=
  -\frac{x\,\operatorname{arsinh}(a\,x)^{n+2}}{(n+1)\,(n+2)}\,+\,
  \frac{\sqrt{a^2\,x^2+1}\,\operatorname{arsinh}(a\,x)^{n+1}}{a(n+1)}\,+\,
  \frac{1}{(n+1)\,(n+2)}\int\operatorname{arsinh}(a\,x)^{n+2}\,dx\quad(n\ne-1,-2)</math>
 
== Inverse hyperbolic cosine integration formulas ==
 
:<math>\int\operatorname{arcosh}(a\,x)\,dx=
  x\,\operatorname{arcosh}(a\,x)-
  \frac{\sqrt{a\,x+1}\,\sqrt{a\,x-1}}{a}+C</math>
 
:<math>\int x\,\operatorname{arcosh}(a\,x)dx=
  \frac{x^2\,\operatorname{arcosh}(a\,x)}{2}-
  \frac{\operatorname{arcosh}(a\,x)}{4\,a^2}-
  \frac{x\,\sqrt{a\,x+1}\,\sqrt{a\,x-1}}{4\,a}+C</math>
 
:<math>\int x^2\,\operatorname{arcosh}(a\,x)dx=
  \frac{x^3\,\operatorname{arcosh}(a\,x)}{3}-\frac{\left(a^2\,x^2+2\right)\sqrt{a\,x+1}\,\sqrt{a\,x-1}}{9\,a^3}+C</math>
 
:<math>\int x^m\,\operatorname{arcosh}(a\,x)dx=
  \frac{x^{m+1}\,\operatorname{arcosh}(a\,x)}{m+1}\,-\,
  \frac{a}{m+1}\int\frac{x^{m+1}}{\sqrt{a\,x+1}\,\sqrt{a\,x-1}}\,dx\quad(m\ne-1)</math>
 
:<math>\int\operatorname{arcosh}(a\,x)^2\,dx=
  2\,x+x\,\operatorname{arcosh}(a\,x)^2-
  \frac{2\,\sqrt{a\,x+1}\,\sqrt{a\,x-1}\,\operatorname{arcosh}(a\,x)}{a}+C</math>
 
:<math>\int\operatorname{arcosh}(a\,x)^n\,dx=
  x\,\operatorname{arcosh}(a\,x)^n\,-\,
  \frac{n\,\sqrt{a\,x+1}\,\sqrt{a\,x-1}\,\operatorname{arcosh}(a\,x)^{n-1}}{a}\,+\,
  n\,(n-1)\int\operatorname{arcosh}(a\,x)^{n-2}\,dx</math>
 
:<math>\int\operatorname{arcosh}(a\,x)^n\,dx=
  -\frac{x\,\operatorname{arcosh}(a\,x)^{n+2}}{(n+1)\,(n+2)}\,+\,
  \frac{\sqrt{a\,x+1}\,\sqrt{a\,x-1}\,\operatorname{arcosh}(a\,x)^{n+1}}{a\,(n+1)}\,+\,
  \frac{1}{(n+1)\,(n+2)}\int\operatorname{arcosh}(a\,x)^{n+2}\,dx\quad(n\ne-1,-2)</math>
 
== Inverse hyperbolic tangent integration formulas ==
 
:<math>\int\operatorname{artanh}(a\,x)\,dx=
  x\,\operatorname{artanh}(a\,x)+
  \frac{\ln\left(1-a^2\,x^2\right)}{2\,a}+C</math>
 
:<math>\int x\,\operatorname{artanh}(a\,x)dx=
  \frac{x^2\,\operatorname{artanh}(a\,x)}{2}-
  \frac{\operatorname{artanh}(a\,x)}{2\,a^2}+\frac{x}{2\,a}+C</math>
 
:<math>\int x^2\,\operatorname{artanh}(a\,x)dx=
  \frac{x^3\,\operatorname{artanh}(a\,x)}{3}+
  \frac{\ln\left(1-a^2\,x^2\right)}{6\,a^3}+\frac{x^2}{6\,a}+C</math>
 
:<math>\int x^m\,\operatorname{artanh}(a\,x)dx=
  \frac{x^{m+1}\operatorname{artanh}(a\,x)}{m+1}-
  \frac{a}{m+1}\int\frac{x^{m+1}}{1-a^2\,x^2}\,dx\quad(m\ne-1)</math>
 
== Inverse hyperbolic cotangent integration formulas ==
 
:<math>\int\operatorname{arcoth}(a\,x)\,dx=
  x\,\operatorname{arcoth}(a\,x)+
  \frac{\ln\left(a^2\,x^2-1\right)}{2\,a}+C</math>
 
:<math>\int x\,\operatorname{arcoth}(a\,x)dx=
  \frac{x^2\,\operatorname{arcoth}(a\,x)}{2}-
  \frac{\operatorname{arcoth}(a\,x)}{2\,a^2}+\frac{x}{2\,a}+C</math>
 
:<math>\int x^2\,\operatorname{arcoth}(a\,x)dx=
  \frac{x^3\,\operatorname{arcoth}(a\,x)}{3}+
  \frac{\ln\left(a^2\,x^2-1\right)}{6\,a^3}+\frac{x^2}{6\,a}+C</math>
 
:<math>\int x^m\,\operatorname{arcoth}(a\,x)dx=
  \frac{x^{m+1}\operatorname{arcoth}(a\,x)}{m+1}+
  \frac{a}{m+1}\int\frac{x^{m+1}}{a^2\,x^2-1}\,dx\quad(m\ne-1)</math>
 
== Inverse hyperbolic secant integration formulas ==
 
:<math>\int\operatorname{arsech}(a\,x)\,dx=
  x\,\operatorname{arsech}(a\,x)-
  \frac{2}{a}\,\operatorname{arctan}\sqrt{\frac{1-a\,x}{1+a\,x}}+C</math>
 
:<math>\int x\,\operatorname{arsech}(a\,x)dx=
  \frac{x^2\,\operatorname{arsech}(a\,x)}{2}-
  \frac{(1+a\,x)}{2\,a^2}\sqrt{\frac{1-a\,x}{1+a\,x}}+C</math>
 
:<math>\int x^2\,\operatorname{arsech}(a\,x)dx=
  \frac{x^3\,\operatorname{arsech}(a\,x)}{3}\,-\,
  \frac{1}{3\,a^3}\,\operatorname{arctan}\sqrt{\frac{1-a\,x}{1+a\,x}}\,-\,
  \frac{x(1+a\,x)}{6\,a^2}\sqrt{\frac{1-a\,x}{1+a\,x}}\,+\,C</math>
 
:<math>\int x^m\,\operatorname{arsech}(a\,x)dx=
  \frac{x^{m+1}\,\operatorname{arsech}(a\,x)}{m+1}\,+\,
  \frac{1}{m+1}\int\frac{x^m}{(1+a\,x)\sqrt{\frac{1-a\,x}{1+a\,x}}}\,dx\quad(m\ne-1)</math>
 
== Inverse hyperbolic cosecant integration formulas ==
 
:<math>\int\operatorname{arcsch}(a\,x)\,dx=
  x\,\operatorname{arcsch}(a\,x)+
  \frac{1}{a}\,\operatorname{arcoth}\sqrt{\frac{1}{a^2\,x^2}+1}+C</math>
 
:<math>\int x\,\operatorname{arcsch}(a\,x)dx=
  \frac{x^2\,\operatorname{arcsch}(a\,x)}{2}+
  \frac{x}{2\,a}\sqrt{\frac{1}{a^2\,x^2}+1}+C</math>
 
:<math>\int x^2\,\operatorname{arcsch}(a\,x)dx=
  \frac{x^3\,\operatorname{arcsch}(a\,x)}{3}\,-\,
  \frac{1}{6\,a^3}\,\operatorname{arcoth}\sqrt{\frac{1}{a^2\,x^2}+1}\,+\,
  \frac{x^2}{6\,a}\sqrt{\frac{1}{a^2\,x^2}+1}\,+\,C</math>
 
:<math>\int x^m\,\operatorname{arcsch}(a\,x)dx=
  \frac{x^{m+1}\operatorname{arcsch}(a\,x)}{m+1}\,+\,
  \frac{1}{a(m+1)}\int\frac{x^{m-1}}{\sqrt{\frac{1}{a^2\,x^2}+1}}\,dx\quad(m\ne-1)</math>
 
{{Lists of integrals}}
 
[[Category:Integrals|Area functions]]
[[Category:Mathematics-related lists|Integrals of inverse hyperbolic functions]]

Revision as of 03:54, 19 February 2014

Historical past of the of the author is probably Gabrielle Lattimer. Fish dealing with acne is something her husband doesn't really like but she does. Idaho is where her home happens to be and she will usually never move. Software happening is what she does but she's always wanted her own business. She are running and maintaining any kind of blog here: http://prometeu.net

Also visit my blog; hack clash of clans (look at this web-site)