Renal function: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>ClueBot NG
m Reverting possible vandalism by 90.219.20.27 to version by Monkbot. False positive? Report it. Thanks, ClueBot NG. (1677722) (Bot)
en>AnomieBOT
m Dating maintenance tags: {{Fact}}
Line 1: Line 1:
{{Refimprove|date=September 2010}}
I'm Willian and I live in a seaside city in northern Brazil, Manaus. I'm 36 and I'm will soon finish my study at Social Studies.<br><br>Here is my webpage; [http://www.cityfacebox.de/activity/p/262184/ clash of clans cheats hack android]
[[File:7812 voltage regulator.jpg|thumb|right|A popular three pin +12 V DC voltage regulator IC.]]A '''voltage regulator''' is designed to automatically maintain a [[Voltage source|constant voltage]] level. A voltage regulator may be a simple "[[Feed_forward_(control)|feed-forward]]" design or may include  [[negative feedback]] [[Control theory|control loops]]. It may use an electromechanical [[mechanism (technology)|mechanism]], or electronic components. Depending on the design, it may be used to regulate one or more [[Alternating current|AC]] or [[Direct current|DC]] voltages.
 
Electronic voltage regulators are found in devices such as computer [[power supply|power supplies]] where they stabilize the DC voltages used by the processor and other elements. In automobile [[alternator]]s and central [[power station]] generator plants, voltage regulators control the output of the plant. In an [[electric power distribution]] system, voltage regulators may be installed at a substation or along distribution lines so that all customers receive steady voltage independent of how much power is drawn from the line.
 
== Measures of regulator quality ==
The output voltage can only be held ''roughly'' constant; the regulation is specified by two measurements:
* '''load regulation''' is the change in output voltage for a given change in load current (for example: "typically 15&nbsp;mV, maximum 100&nbsp;mV for load currents between 5&nbsp;mA and 1.4&nbsp;A, at some specified temperature and input voltage").
* '''line regulation''' or '''input regulation''' is the degree to which output voltage changes with input (supply) voltage changes - as a ratio of output to input change (for example "typically 13&nbsp;mV/V"), or the output voltage change over the entire specified input voltage range (for example "plus or minus 2% for input voltages between 90&nbsp;V and 260&nbsp;V, 50-60&nbsp;Hz").
 
Other important parameters are:
* '''Temperature coefficient''' of the output voltage is the change with temperature (perhaps averaged over a given temperature range).
* '''Initial accuracy''' of a voltage regulator (or simply "the voltage accuracy") reflects the error in output voltage for a fixed regulator without taking into account temperature or aging effects on output accuracy.
* '''Dropout voltage''' is the minimum difference between input voltage and output voltage for which the regulator can still supply the specified current. A [[Low-dropout regulator|low drop-out]] (LDO) regulator is designed to work well even with an input supply only a [[volt]] or so above the output voltage. The input-output differential at which the voltage regulator will no longer maintain regulation is the dropout voltage. Further reduction in input voltage will result in reduced output voltage.  This value is dependent on load current and junction temperature.
* '''Absolute maximum ratings''' are defined for regulator components, specifying the continuous and peak output currents that may be used (sometimes internally limited), the maximum input voltage, maximum power dissipation at a given temperature, etc.
* '''Output noise''' (thermal [[white noise]]) and '''output dynamic impedance''' may be specified as graphs versus frequency, while output '''ripple''' noise (mains "hum" or switch-mode "hash" noise) may be given as peak-to-peak or [[Root mean square|RMS]] voltages, or in terms of their spectra.
* '''Quiescent current''' in a regulator circuit is the current drawn internally, not available to the load, normally measured as the input current while no load is connected (and hence a source of inefficiency; some [[linear regulator]]s are, surprisingly, more efficient at very low current loads than switch-mode designs because of this).
* '''Transient response''' is the reaction of a regulator when a (sudden) change of the load current (called the ''load transient'') or input voltage (called the ''line transient'') occurs. Some regulators will tend to oscillate or have a slow response time which in some cases might lead to undesired results. This value is different from the regulation parameters, as that is the stable situation definition. The transient response shows the behaviour of the regulator on a change. This data is usually provided in the technical documentation of a regulator and is also dependent on output capacitance.
* '''Mirror-image insertion protection''' means that a regulator is designed for use when a voltage, usually not higher than the maximum input voltage of the regulator, is applied to its output pin while its input terminal is at a low voltage, volt-free or grounded. Some regulators can continuously withstand this situation; others might only manage it for a limited time such as 60 seconds, as usually specified in the datasheet. This situation can occur when a three terminal regulator is incorrectly mounted for example on a PCB, with the output terminal connected to the unregulated DC input and the input connected to the load. Mirror-image insertion protection is also important when a regulator circuit is used in battery charging circuits, when external power fails or is not turned on and the output terminal remains at battery voltage.
 
==Electronic voltage regulators==
A simple voltage regulator can be made from a resistor in series with a [[diode]] (or series of diodes). Due to the logarithmic shape of diode V-I curves, the voltage across the diode changes only slightly due to changes in current drawn or changes in the input. When precise voltage control and efficiency are not important, this design may work fine.
 
Feedback voltage regulators operate by comparing the actual output voltage to some fixed reference voltage. Any difference is amplified and used to control the regulation element in such a way as to reduce the voltage error. This forms a [[negative feedback]] [[Control theory|control loop]]; increasing the [[open-loop gain]] tends to increase regulation accuracy but reduce stability (avoidance of oscillation, or ringing during step changes). There will also be a trade-off between stability and the speed of the response to changes.  If the output voltage is too low (perhaps due to input voltage reducing or load current increasing), the regulation element is commanded, ''up to a point'', to produce a higher output voltage–by dropping less of the input voltage (for linear series regulators and [[Buck converter|buck]] [[switching regulator]]s), or to draw input current for longer periods (boost-type [[switching regulator]]s); if the output voltage is too high, the regulation element will normally be commanded to produce a lower voltage. However, many regulators have over-current protection, so that they will entirely stop sourcing current (or limit the current in some way) if the output current is too high, and some regulators may also shut down if the input voltage is outside a given range (see also: [[Crowbar (circuit)|crowbar circuits]]).
 
== Electromechanical regulators ==
[[Image:Simple electromechanical voltage regulator.PNG|thumb|300px|Circuit design for a simple electromechanical voltage regulator.]]
[[Image:Stabilizer.JPG|thumb|300px|A voltage stabilizer using electromechanical relays for switching.]]
[[Image:Simple electromechanical regulation.PNG|thumb|300px|Graph of voltage output on a time scale.]]
 
In electromechanical regulators, voltage regulation is easily accomplished by coiling the sensing wire to make an electromagnet. The [[magnetic field]] produced by the current attracts a moving ferrous core held back under spring tension or gravitational pull. As voltage increases, so does the current, strengthening the magnetic field produced by the coil and pulling the core towards the field. The magnet is physically connected to a mechanical power switch, which opens as the magnet moves into the field. As voltage decreases, so does the current, releasing spring tension or the weight of the core and causing it to retract. This closes the switch and allows the power to flow once more.
 
If the mechanical regulator design is sensitive to small voltage fluctuations, the motion of the solenoid core can be used to move a selector switch across a range of resistances or transformer windings to gradually step the output voltage up or down, or to rotate the position of a moving-coil AC regulator.
 
Early [[automobile]] [[electrical generator|generators]] and [[alternator (auto)|alternator]]s had a mechanical voltage regulator using one, two, or three [[relay]]s and various [[resistor]]s to stabilize the generator's output at slightly more than 6 or 12 V, independent of the [[internal combustion engine|engine]]'s [[rpm]] or the varying load on the vehicle's electrical system. Essentially, the relay(s) employed [[pulse width modulation]] to regulate the output of the generator, controlling the field current reaching the generator (or alternator) and in this way controlling the output voltage produced.
 
The regulators used for DC generators (but not alternators) also disconnect the generator when it was not producing electricity, thereby preventing the battery from discharging back into the generator and attempting to run it as a motor. The [[rectifier]] [[diode]]s in an alternator automatically perform this function so that a specific relay is not required; this appreciably simplified the regulator design.
 
More modern designs now use ''solid state'' technology ([[transistor]]s) to perform the same function that the relays perform in electromechanical regulators.
 
Electromechanical regulators are used for mains voltage stabilisation &mdash; see [[Voltage regulator#AC voltage stabilizers | AC voltage stabilizers]] below.
 
== Coil-rotation AC voltage regulator ==
 
[[Image:Moving Coil Voltage Regulator.png|thumb|250px|Basic design principle and circuit diagram for the rotating-coil AC voltage regulator.]]
 
This is an older type of regulator used in the 1920s that uses the principle of a fixed-position field coil and a second field coil that can be rotated on an axis in parallel with the fixed coil, similar to a [[Transformer types#Variocoupler|variocoupler]].
 
When the movable coil is positioned perpendicular to the fixed coil, the magnetic forces acting on the movable coil balance each other out and voltage output is unchanged. Rotating the coil in one direction or the other away from the center position will increase or decrease voltage in the secondary movable coil.
 
This type of regulator can be automated via a servo control mechanism to advance the movable coil position in order to provide voltage increase or decrease. A braking mechanism or high ratio gearing is used to hold the rotating coil in place against the powerful magnetic forces acting on the moving coil.
 
== AC voltage stabilizers ==
[[File:Konstanze.jpg|thumb|Magnetic mains regulator]]
=== Electromechanical ===
Electromechanical regulators called ''voltage stabilizers'' or ''tap-changers'', have also been used to regulate the voltage on AC [[power distribution]] lines. These regulators operate by using a [[servomechanism]] to select the appropriate tap on an [[auto transformer]] with multiple taps, or by moving the wiper on a continuously variable auto transfomer. If the output voltage is not in the acceptable range, the servomechanism switches the tap, changing the turns ratio of the transformer, to move the secondary voltage into the acceptable region. The controls provide a [[dead band]] wherein the controller will not act, preventing the controller from constantly adjusting the voltage ("hunting") as it varies by an acceptably small amount.
 
===Constant-voltage transformer=== <!--Redirected from [[Constant-voltage transformer]] and other-->
The '''ferroresonant transformer''', '''ferroresonant regulator''' or '''constant-voltage transformer''' is a type of saturating transformer used as a voltage regulator. These transformers use a [[tank circuit]] composed of a high-voltage resonant winding and a [[capacitor]] to produce a nearly constant average output voltage with a varying input current or varying load. The circuit has a primary on one side of a magnet shunt and the tuned circuit coil and secondary on the other side.  The regulation is due to magnetic saturation in the section around the secondary.
 
The ferroresonant approach is attractive due to its lack of active components, relying on the square loop saturation characteristics of the tank circuit to absorb variations in average input voltage. Saturating transformers provide a simple rugged method to stabilize an AC power supply.
 
Older designs of ferroresonant transformers had an output with high [[harmonic]] content, leading to a distorted output waveform. Modern devices are used to construct a perfect [[sine wave]]. The ferroresonant action is a [[magnetic flux|flux]] limiter rather than a voltage regulator, but with a fixed supply frequency it can maintain an almost constant average output voltage even as the input voltage varies widely.
 
The ferroresonant transformers, which are also known as Constant Voltage Transformers (CVTs) or ferros, are also good surge suppressors, as they provide high isolation and inherent short-circuit protection.
 
A ferroresonant transformer can operate with an input voltage range ±40% or more of the nominal voltage.
 
Output power factor remains in the range of 0.96 or higher from half to full load.
 
Because it regenerates an output voltage waveform, output distortion, which is typically less than 4%, is independent of any input voltage distortion, including notching.
 
Efficiency at full load is typically in the range of 89% to 93%.  However, at low loads, efficiency can drop below 60%. The current-limiting capability also becomes a handicap when a CVT is  used in an application with moderate to high [[inrush current]] like motors, transformers or magnets.  In this case, the CVT has to be sized to accommodate the peak current, thus forcing it to run at low loads and poor efficiency.
 
Minimum maintenance is required, as transformers and capacitors can be very reliable. Some units have included redundant capacitors to allow several capacitors to fail between inspections without any noticeable effect on the device's performance.
 
Output voltage varies about 1.2% for every 1% change in supply frequency. For example, a 2 Hz change in generator frequency, which is very large, results in an output voltage change of only 4%, which has little effect for most loads.
 
It accepts 100% single-phase switch-mode power supply loading without any requirement for derating, including all neutral components.
 
Input current distortion remains less than 8% [[Total harmonic distortion|THD]] even when supplying nonlinear loads with more than 100% current THD.
 
Drawbacks of CVTs are their larger size, audible humming sound, and the high heat generation caused by saturation.
 
== DC voltage stabilizers ==
Many simple DC power supplies regulate the voltage using a ''shunt regulator'' such as a [[Zener diode]], [[Avalanche diode|avalanche breakdown diode]], or [[voltage regulator tube]]. Each of these devices begins conducting at a specified voltage and will conduct as much current as required to hold its terminal voltage to that specified voltage. The power supply is designed to only supply a maximum amount of current that is within the safe operating capability of the shunt regulating device (commonly, by using a series [[resistor]]). <!--In shunt regulators, the voltage reference is also the regulating device. (What does it mean?)-->
 
If the stabilizer must provide more power, the shunt regulator output is only used to provide the standard voltage reference for the electronic device, known as the voltage stabilizer. The voltage stabilizer is the electronic device, able to deliver much larger currents on demand.
 
== Active regulators ==
Active regulators employ at least one active (amplifying) component such as a transistor or operational amplifier. Shunt regulators are often (but not always) passive and simple, but always inefficient because they (essentially) dump the excess current not needed by the load. When more power must be supplied, more sophisticated circuits are used. In general, these active regulators can be divided into several classes:
* Linear series regulators
* Switching regulators
* SCR regulators
 
=== Linear regulators ===
{{main|Linear regulator}}
 
Linear regulators are based on devices that operate in their linear region (in contrast, a switching regulator is based on a device forced to act as an on/off switch).  In the past, one or more [[vacuum tube]]s were commonly used as the variable resistance. Modern designs use one or more [[transistor]]s instead, perhaps within an [[Integrated Circuit]]. Linear designs have the advantage of very "clean" output with little noise introduced into their DC output, but are most often much less efficient and unable to step-up or invert the input voltage like switched supplies. All linear regulators require a higher input than the output. If the input voltage approaches the desired output voltage, the regulator will "drop out". The input to output voltage differential at which this occurs is known as the regulator's drop-out voltage.
 
Entire linear regulators are available as [[integrated circuit]]s. These chips come in either fixed or adjustable voltage types.
 
=== Switching regulators ===
{{main|Switched-mode power supply}}
 
Switching regulators rapidly switch a series device on and off. The [[duty cycle]] of the switch sets how much [[electric charge|charge]] is transferred to the load. This is controlled by a similar feedback mechanism as in a linear regulator. Because the series element is either fully conducting, or switched off, it dissipates almost no power; this is what gives the switching design its efficiency. Switching regulators are also able to generate output voltages which are higher than the input, or of opposite polarity — something not possible with a linear design.
 
Like linear regulators, nearly-complete switching regulators are also available as integrated circuits. Unlike linear regulators, these usually require one external component: an [[inductor]] that acts as the energy storage element. (Large-valued inductors tend to be physically large relative to almost all other kinds of componentry, so they are rarely fabricated within integrated circuits and IC regulators — with some exceptions.<ref>{{Citation
  | last =
  | first =
  | author-link =
  | last2 =
  | first2 =
  | author2-link =
  | title = Texas Instruments LM2825 Integrated Power Supply 1A DC-DC Converter
  | date =
  | year =
  | url = http://www.ti.com/product/lm2825
  | accessdate = 2010-09-19}}
</ref><ref>{{Citation
  | last =
  | first =
  | author-link =
  | last2 =
  | first2 =
  | author2-link =
  | title = Linear Technology μModule Regulators
  | date =
  | year =
  | url = http://www.linear.com/docs/25633
  | accessdate = 2011-03-08}}
</ref>)
 
=== Comparing linear vs. switching regulators ===
The two types of regulators have their different advantages:
* Linear regulators are best when low output noise (and low [[Radio Frequency Interference|RFI]] radiated noise) is required
* Linear regulators are best when a fast response to input and output disturbances is required.
* At low levels of power, linear regulators are cheaper and occupy less [[printed circuit board]] space.
* Switching regulators are best when power efficiency is critical (such as in [[portable computer]]s), ''except'' linear regulators are more efficient in a small number of cases (such as a 5V microprocessor often in "sleep" mode fed from a 6V battery, ''if'' the complexity of the switching circuit and the junction capacitance charging current means a high quiescent current in the switching regulator).
* Switching regulators are required when the only power supply is a DC voltage, and a higher output voltage is required.
* At high levels of power (above a few watts), switching regulators are cheaper (for example, the cost of removing heat generated is less).
 
=== SCR regulators ===
Regulators powered from AC power circuits can use [[silicon controlled rectifier]]s (SCRs) as the series device. Whenever the output voltage is below the desired value, the SCR is triggered, allowing electricity to flow into the load until the AC mains voltage passes through zero (ending the half cycle). SCR regulators have the advantages of being both very efficient and very simple, but because they can not terminate an on-going half cycle of conduction, they are not capable of very accurate voltage regulation in response to rapidly-changing loads. An alternative is the SCR shunt regulator which uses the regulator output as a trigger, both series and shunt designs are noisy, but powerful, as the device has a low on resistance.
 
=== Combination (hybrid) regulators ===
Many power supplies use more than one regulating method in series. For example, the output from a switching regulator can be further regulated by a linear regulator. The switching regulator accepts a wide range of input voltages and efficiently generates a (somewhat noisy) voltage slightly above the ultimately desired output. That is followed by a linear regulator that generates exactly the desired voltage and eliminates nearly all the [[noise]] generated by the switching regulator. Other designs may use an SCR regulator as the "pre-regulator", followed by another type of regulator. An efficient way of creating a variable-voltage, accurate output power supply is to combine a multi-tapped transformer with an adjustable linear post-regulator.
 
==Example linear regulators==
=== Transistor regulator ===
In the simplest case a [[common collector]] transistor (emitter follower) is used with the base of the regulating transistor connected directly to the voltage reference:
[[Image:Voltage_stabiliser_transistor,_IEC_symbols.svg|center]]
 
A simple transistor regulator will provide a relatively constant output voltage, ''U<sub>out</sub>'', for changes in the voltage of the power source, ''U<sub>in</sub>'', and for changes in load, ''R<sub>L</sub>'', provided that ''U<sub>in</sub>'' exceeds ''U<sub>out</sub>'' by a sufficient margin, and that the power handling capacity of the transistor is not exceeded.
 
The output voltage of the stabilizer is equal to the [[zener diode]] voltage less the base–emitter voltage of the transistor, ''U<sub>Z</sub>'' − ''U<sub>BE</sub>'', where ''U<sub>BE</sub>'' is usually about 0.7&nbsp;V for a silicon transistor, depending on the load current. If the output voltage drops for any external reason, such as an increase in the current drawn by the load, the transistor's base–emitter voltage (''U<sub>BE</sub>'') increases, turning the transistor on further and delivering more current to increase the load voltage again.
 
''R<sub>v</sub>'' provides a [[Biasing|bias]] current for both the zener diode and the transistor. The current in the diode is minimum when the load current is maximum. The circuit designer must choose a minimum voltage that can be tolerated across ''R<sub>v</sub>'', bearing in mind that the higher this voltage requirement is, the higher the required input voltage, ''U<sub>in</sub>'', and hence the lower the efficiency of the regulator. On the other hand, lower values of ''R<sub>v</sub>'' lead to higher power dissipation in the diode and to inferior regulator characteristics.<ref name=Alley-Atwood>{{cite book|last=Alley|first=Charles|title=Electronic Engineering|year=1973|publisher=John Wiley & Sons|location=New York and London|isbn=0-471-02450-3|page=534|coauthors=Atwood, Kenneth}}</ref>
 
<math>R_v = \frac{V_{R min}}{I_{D min} + I_{L max}/(h_{FE} + 1)}\ </math>
 
where ''V<sub>R min</sub>'' is the minimum voltage to be maintained across ''R<sub>v</sub>''<br>
''I<sub>D min</sub>'' is the minimum current to be maintained through the zener diode<br>
''I<sub>L max</sub>'' is the maximum design load current<br>
''h<sub>FE</sub>'' is the forward current gain of the transistor, ''I<sub>Collector</sub>'' / ''I<sub>Base</sub>''<ref name=Alley-Atwood/>
 
=== Regulator with an operational amplifier ===
The stability of the output voltage can be significantly increased by using an [[operational amplifier]]:
 
[[File:Voltage stabiliser OA, IEC symbols.svg|center]]
 
In this case, the operational amplifier drives the transistor with more current if the voltage at its inverting input drops below the output of the voltage reference at the non-inverting input. Using the [[Voltage divider rule|voltage divider]] (R1, R2 and R3) allows choice of the arbitrary output voltage between U<sub>z</sub> and U<sub>in</sub>.
 
== See also ==
{{Portal|Electronics}}
* [[Constant current regulator]]
* [[DC-to-DC converter]]
* [[Third brush dynamo]]
* [[Voltage regulator module]]
 
== References ==
{{Reflist|2}}
 
==Further reading==
* ''Linear & Switching Voltage Regulator Handbook''; ON Semiconductor; 118 pages; 2002; HB206/D.<small>[http://www.onsemi.com/pub_link/Collateral/HB206-D.PDF (Free PDF download)]</small>
 
{{Electronic component}}
 
[[Category:Electrical power control]]
[[Category:Analog circuits]]

Revision as of 23:47, 18 February 2014

I'm Willian and I live in a seaside city in northern Brazil, Manaus. I'm 36 and I'm will soon finish my study at Social Studies.

Here is my webpage; clash of clans cheats hack android