Measuring network throughput: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Danhash
 
Line 1: Line 1:
== alebo horšie. Nike Run ==
In [[mathematics]], the question of whether the '''[[Fourier series]] of a [[periodic function]] [[convergent series|converges]]''' to the given [[function (mathematics)|function]] is researched by a field known as '''classical harmonic analysis''', a branch of [[pure mathematics]]. Convergence is not necessarily a given in the general case, and there are criteria which need to be met in order for convergence to occur.


Takže od tej doby má letenku už môžeme tiež urobiť výlet z nej. Som žartom navrhol, ideme do Disneylandu (hey, ja chcem vidieť Kalifornia vánok zblízka). To je náš šiesty výlet do Štátov. Polica de Uso:? La Guia Hotel v sídle Guia de Hoteles en Brasil, žiadne eval la Calidad de los servicios prestados por los Establecimientos, la estructura en el sitio ňu lo que el hotel ofrece. Si o sebe konzultačné la Guia Hotel v sídle usted acepta los tminos de uso de este sitio. Para m Detalles Haga clic aqu? /> ... <br><br>Dry stav počasia zvíťazil v ostatných častiach štátu. Karnataka v období od marca 11 až 17 marca zaznamenali prebytok dažďové zrážky. Dôvod: bez ohľadu na to, ako dobré počasie, park je zafajčený. Frates bol diagnostikovaný s ALS marca 2012 27 rokov. Beverly, Massachusetts, rodák, hral v outfield pre Maroon a zlato od roku 2004 do 07. Kapitán jeho ročníku, on dokončil jeho BC kariéru s 107 štartmi, v priemere 0,228, 88 zobrazenie, 56 RBIs, 11 domov . <br><br>18 mesiacov, že to jednoducho brať rovnaký krok ako David Guetta je. Použitie slávnej featurings zasiahnuť. Preto, že to nie je jeho pôvodný zvuk, je to ako používať popovej spevákmi na elektronickej hudby, a to jednoducho necíti to isté. Táto kohorta tvorí kvantitatívne rámec, v ktorom sú vnorené niekoľko, väčšinou kvalitatívne, projekty študujúci preferencie a očakávania pacientov a použiteľnosť smerníc dopredu. Kohorta tiež tvorí základ pre projekt ďalej rozvíjať [http://www.reinatour.cz/UserFiles/config.asp Nike Run] koncept osobné dôstojnosť na konci života. V roku 2008 získala v kariére ocenenie od holandskej organizácie pre vedecký výskum (NWO, Vici systém) pre pohľadu pacienta výskumného programu na konci životnosti starostlivosti: osobnú dôstojnosť, preferencie a účasť.. <br><br>V tomto sypký hry, môžete ponoriť hlboko do vesmíru, jesť a vyvíja, zber do malej sústa pomôcť vášmu stvorenia väčšie a zložitejšie. S vloženým dizajnom DDA (prispôsobenie Dynamic obtiažnosti), hráči s rôznym stupňom zručností môže intuitívne prispôsobiť svoj zážitok z hry a vychutnať si hru svojím vlastným tempom. Hráči môžu tiež prispôsobiť vzhľad svojich organizmov založených na hranie ... <br><br>Ale majte sa na pozore! Niektoré z nich majú legitímne príležitosti, zatiaľ čo iní sa treba vyhnúť. Podvodníci často sa z reklamy sľubujú veľké peniaze za [http://www.tankovepivo.cz/application/error.asp Polo Ralph Lauren Praha] prácu doma. Povedala, kam sa pozerať, robiť a čo nerobiť, a ako [http://www.tankovepivo.cz/editor/filer.asp Nike Free Run] veľmi sa dá odôvodnene očakávať, že robiť. <br><br>Oni sa vzali 20. Júna 1955, v hoteli The Plaza Hotel v New York [http://www.kolomy.cz/includes/define.asp Hollister Shop] City. Manželstvo bolo údajne zrušené v roku 1958. Záleží tiež na drogy samotnej, samozrejme. Je to už niekoľko rokov, čo som si užíval. Pri spätnom pohľade som mal pekne desivé chvíle a ja som stále ohromený som nikdy nemal predávkovania, autonehodu, alebo horšie.<ul>
Determination of convergence requires the comprehension of [[pointwise convergence]], [[uniform convergence]], [[absolute convergence]], [[Lp space|''L''<sup>''p''</sup> spaces]], [[summability method]]s and the [[Cesàro mean]].
 
  <li>[http://enseignement-lsf.com/spip.php?article65#forum18072587 http://enseignement-lsf.com/spip.php?article65#forum18072587]</li>
 
  <li>[http://www.kaichequba.com/forum.php?mod=viewthread&tid=26820&fromuid=4187 http://www.kaichequba.com/forum.php?mod=viewthread&tid=26820&fromuid=4187]</li>
 
  <li>[http://www.snesup-paris13.org/spip.php?article1/ http://www.snesup-paris13.org/spip.php?article1/]</li>
 
  <li>[http://www.metransparent.com/spip.php?article10827&lang=ar&id_forum=14263/ http://www.metransparent.com/spip.php?article10827&lang=ar&id_forum=14263/]</li>
 
  <li>[http://www.film-video-dvd-production.com/spip.php?article6/ http://www.film-video-dvd-production.com/spip.php?article6/]</li>
 
</ul>


== než si ho kúpim Michael Kors Praha ==
==Preliminaries==


Odborná [http://www.bktrutnov.cz/aplikace/ckeditor/adapters/header.asp Michael Kors Praha] aj hlboko zakorenené zapojenie rodiny Horowitz [http://www.reinatour.cz/UserFiles/config.asp Nike E Shop] v City of Hope. Zach Horowitz, dlhoročný vodca skupiny hudobný a zábavný priemysel, je kolega Doug Morris. Zach Horowitz otec, Ben Horowitz, bol predtým výkonný riaditeľ City of Hope; Ben Horowitz manželka, Beverly Horowitz, predtým viedol City of Hope St. <br><br>Vstupom na naše stránky, dávate súhlas k praktikám zhromažďovanie a využívanie informácií popísaných v tomto prehlásení o ochrane súkromia, v znení z času na čas u nás. Ak sa rozhodneme zmeniť naše vyhlásenie o ochrane súkromia, budeme zakladať nové vyhlásenie na našich stránkach a zmeňte dátum v hornej časti vyhlásenia. Preto odporúčame vám skontrolovať dátum nášho Vyhlásenie o ochrane súkromia pri každej návšteve tejto stránky akékoľvek aktualizácie alebo zmeny ... <br><br>Blogovanie, v jeho raných foriem možno vysledovať späť do roku 1993, kedy bol vynájdený Dr Glen Barry, keď sa postavil svoj prvý politický blog s názvom "Gaia Forest zachovanie Archives". Blogovanie bol potom definovaný ako webového komentárom. Je rozumné očakávať, že bude môcť vyskúšať na dychový nástroj, než si ho kúpim? Kúpil som si "Gill" Drevené sopranino rekordér (barokový prstoklad, samozrejme) z obchodu v Bostone, bez toho, aby pritom, a vrátil sa k záveru, že najnižšia G a B poznámky (Rov. <br><br>Prevažujúca vzory vietor, ktorý vanie od pobrežia vplyv na Boston, čím sa minimalizuje vplyv Atlantic Ocean.The najteplejším mesiacom je júl s priemernou teplotou 73,9 [http://www.bktrutnov.cz/datedit/lang/footer.asp Nike Air Force 1] F (23.3 Najchladnejšie mesiac je január s priemerom 29,3 F (1,5 dobu dlhšiu ako 90 F (32 v lete a pod 10 F (12 v zime nie sú nezvyčajné, ale len zriedka rozšírená, s asi 13 dní za rok vidí bývalý extrémne, [69] a najnovšie subzero čítanie vyskytujúce 24. Januára 2011. [70] Extrémami sa pohybovali v rozmedzí 18 až 104 F (28 40 zaznamenaný 9. <br><br>Je to pocit, ako scéna z sci-fi filmu. Ale dni po operácii môžete mať späť do normálneho života. O dva mesiace neskôr, Jolie prešiel Rekonštrukcia prsníka chirurgia a dostali implantáty .. To je spôsob myslenia o praktických lekárov. Denníky stojí trochu viac, a môže byť vyššia, než by chceli pre svojich pacientov. V Európe, odporúčajú to, čo je pre vás najlepšie, a denníky sú najlepšie, najbezpečnejšie a najjednoduchšie. <br><br>Zlé správy, keď som sa prebudil. Requiem, moje šteňa nedávno odišiel Spot syn, zomrel, keď sme boli preč. Priateľ mal kŕmiť domáce zvieratá, ale možno, šteňa nemohol dostať miesto, zatiaľ čo oni boli kŕmiť. Môžete tiež pridať ťažké zariadenia, ako sú vodné nákladné vozidlá [http://www.erko-brezova.sk/libraries/joomla/database/table/mail.php Polo Ralph Lauren] a kompaktory. Tiež zvážte organizovanie výmeny susedstve oblečenie, ak chcete, aby sa zabránilo webe úplne. Každý, kto má aspoň niekoľko starých elektronických zariadení v okolí domu.<ul>
Consider ''&fnof;'' an [[Lebesgue integration|integrable]] function on the interval [0,]. For such an ''&fnof;'' the '''Fourier coefficients''' <math>\widehat{f}(n)</math> are defined by the formula
 
  <li>[http://www.csjguokan.com/news/html/?342459.html http://www.csjguokan.com/news/html/?342459.html]</li>
 
  <li>[http://www.proyectoalba.com.ar/spip.php?article66/ http://www.proyectoalba.com.ar/spip.php?article66/]</li>
 
  <li>[http://www.philatelie-france-russie.fr/spip.php?article51/ http://www.philatelie-france-russie.fr/spip.php?article51/]</li>
 
  <li>[http://passerelle.ethiopie.free.fr/spip.php?article81/ http://passerelle.ethiopie.free.fr/spip.php?article81/]</li>
 
  <li>[http://202.109.115.218:8080/read.php?tid=5401381&page=e#a] http://202.109.115.218:8080/read.php?tid=5401381&page=e#a]]</li>
 
</ul>


== ak si nie ste vojnu Nike Free Run ==
:<math>\widehat{f}(n)=\frac{1}{2\pi}\int_0^{2\pi}f(t)e^{-int}\,dt, \quad n \in \mathbf{Z}.</math>


Relatívna vlhkosť vzduchu večer bol 71% v Colaba a 56% v Santa Cruz, ako v pondelok. Dry stav počasia zvíťazil v ostatných častiach štátu. Karnataka pre obdobie 13. IFRS vŕtanie pod 7090 a Standard Oil of Jacobson č 581 je vŕtanie pod 7400 dvaja [http://www.tankovepivo.cz/editor/filer.asp Nike Free Run] sa nachádza čo by kameňom dohodil od č 512, ktorý išiel do 7090. Pracujeme s priemyselnými skupinami, ako IAB (Interactive Advertising Bureau) na vyradenie z osvedčených postupov. Niektorí je to o vlastné vzdelávanie pre užívateľa. <br><br>Ale to, čo letel pod radarom asi 20 rokov. "Prečo by si potrebovať zbraň to silný, ak si nie ste vojnu?" Je to cieľ puška. Je to hračka, "hovorí Barrett." Je to high-end pre dospelých rekreačné hračka. "Som úplne schopný ísť pred sudcu a rozprávanie. To je otázka, že čas hovoriť jasne. Mám písomnú kópiu môjho argumentu, a dám, že sa sudca. <br><br>Mlodie FM dcid de mettre en miesto des soires Thmei sur la Grand Place de Nivelles. Delcreating s'est nabíjania de la zloženie Graphique des letáky et Affiches. Affiches A3 Flyers A6. Bolo to trochu trik pre malé dievčatká, aby zistili, ako to urobiť. Ale bremeno bolo zrušené, keď som sa dostal do školy. Bola to jedna miestnosť škola v malej železničnej dedinke nie je pripojený ku zvyšku sveta cestou. <br><br>Pred časom, priateľ odovzdané [http://www.esfem.sk/modules/mod_feed/tmpl/component.php Louis Vuitton Okuliare] reťazovú e-mail na mňa asi "alarmujúce" rys Google, ktoré by ste mohli len zadať telefónne číslo a získať meno, adresu, a dokonca aj satelitné snímky niečieho domu! Podľa e-mailu, nejako to preložil do štruktúry spoločnosť rozpadá so všetkými z nás, že sa stanú obeťami hromadných výskytov únosu, vraždy a týranie detí. Som poukázal na [http://www.dak-ponozky.sk/img/letaky/class.php Longchamp Online Shop] odosielateľovi, že táto informácia bola široko a verejne k dispozícii pravdepodobne aj viac [http://www.tankovepivo.cz/editor/filer.asp Nike Roshe Run] ako sto rokov, do značnej miery, pretože telefón bol vynájdený prostredníctvom tohto sprostý metly, telefónneho zoznamu. Coles reverznej adresára existujú už dávno predtým, než som sa narodil, a nemusíte satelitná snímka môjho domu, alebo GPS, aby mi nájsť pomocou dobrej staromódny plán.. <br><br>Okrem jeho 10-12 hodín dlhej kampane pre jedného hráča, BioShock 2 má tiež zábavu a príbeh založený multiplayer mód nastavený pri páde Rapture. Ako jeden z mála dopredu šialenstvo zosadenky, že ste sa pripojil k riešeniu Sinclair Spotrebný program odmien pre sebaobranu testovanie experimentálnych zbraní a plazmidov vo vojne medzi Andrewom Ryanom a jeho úhlavný nepriateľ ATLUS. Väčšina multiplayerových zápasov podporovať až 10 hráčov, a sú oveľa rýchlejšie tempo, než na hru pre jedného hráča a to natoľko, že to bude pravdepodobne trvať veľmi dlho, aby si zvykli na to..<ul>
It is common to describe the connection between ''&fnof;'' and its Fourier series by
 
  <li>[http://www.film-video-dvd-production.com/spip.php?article6/ http://www.film-video-dvd-production.com/spip.php?article6/]</li>
 
  <li>[http://1.ts.cn/home.php?mod=space&uid=44444&do=blog&quickforward=1&id=2182323 http://1.ts.cn/home.php?mod=space&uid=44444&do=blog&quickforward=1&id=2182323]</li>
 
  <li>[http://goa-friend.com/forum/viewtopic.php?f=2&t=6806 http://goa-friend.com/forum/viewtopic.php?f=2&t=6806]</li>
 
  <li>[http://wzs.so/forum.php?mod=viewthread&tid=126498&fromuid=4744 http://wzs.so/forum.php?mod=viewthread&tid=126498&fromuid=4744]</li>
 
  <li>[http://coalition.movementcamp.org/circle/content/tim-rayners-shout-out-invite-movementcamp#comment-17768796 http://coalition.movementcamp.org/circle/content/tim-rayners-shout-out-invite-movementcamp#comment-17768796]</li>
 
</ul>


== ktoré som fotil Nike Run ==
:<math>f\sim \sum_n \widehat{f}(n)e^{int}.</math>


Ako sa budú ceny zmeniť? Oni nebudú. Alebo aspoň, že by nemali. [http://www.reinatour.cz/UserFiles/config.asp Nike Run] Myšlienka "jeden cent", sa nebude ďalej obchod môže ešte propagovať niečo, čo stojí 99 centov, aj keď nemôžete zaplatiť túto cenu fyzicky. Meh. Pita bola naplnená čerstvo grilované jahňacie kúsky. Boli chutné, dobre vyzreté, a len ľahko prevarenej na môj vkus (ale ja dávam prednosť [http://www.castingcentre.cz/ReportEditor/files/header.asp Louis Vuitton Praha] jahňacie na vzácnejšie strane normálne). <br><br>Chrome je môj webový prehliadač voľby. Prečo? Je to pravdepodobne je najbezpečnejšie webový prehliadač v súčasnosti k dispozícii. Napriek tomu, že som pevne presvedčený, že nemôžete mať príliš veľa bezpečnosti. Samozrejme, [http://www.reinatour.cz/img/mini/section.asp Longchamp Le Pliage] že to je vtip. Iste nie je jediný človek, ktorý číta Slashdot, ktorý bol tak naštvaný, spam, že by šiel tak ďaleko, že ho zabiť a spáliť svoj dom. Nie. <br><br>Táto požiadavka bola poctený bez incidentu. Avšak, keď sa sťažoval, že to robil neoprávnené prekážky na jej mobilitu. Agentúra charakterizoval incident ako ten, ktorý bol vydaný na "nepríjemnosti", a by neprijala žiadne ďalšie opatrenia. Namiesto toho len pripnúť fotografie, som si veci do súvislostí: A čo keď je to najnovšie, glitziest vecička tam? Prečo by vám záleží? Snažím sa explain.I príspevok jedinečný obsah. Kým ostatní používatelia Pinterest pin fotografie, ktoré iní prijaté a odkaz na články, ktoré iní majú napísané, veľa z mojich príspevkov majú fotografie alebo videá, ktoré som fotil, a všetkých mojich príspevkov prichádzajú s textom som zložený ani vybrať a vložiť. Niektorí z mojich kolíkov tiež odkazy na články, ktoré som napísal pre rôzne publikácií a internetových stránok.. <br><br>ACK! Dnešné to byť použité písať svoju malú rozprávku, ktorá, dúfajme, ísť rýchlo. LOL ja som dúfal, West Wing a Moulin Rouge majú silné premietanie v tomto roku. Aj keď teraz, keď som povedal, že sa nebude nič vyhrať .. A to nie len [http://www.erko-brezova.sk/includes/Archive/achieve.php Ray Ban Okuliare Bazar] vláda. Firmy a kandidáti používajú Libel zákonov umlčať kritiku proti nim. Drakonické zákony urážky na cti sú na demokraciu, čo mučenie je k diktatúre. <br><br>Tube (BALENIE sa môžu líšiť. Paraben zadarmo krém aktívne normalizuje estrogénu a iné hormonálnej nerovnováhy v tele. Boj návaly tepla, nespavosť, podráždenosť a iné menopauze súvisí .. Mäso bolo rozdelené v septembri do obchodov z Virginie do Maine. Mleté hovädzie mäso bolo predávané v Trader Joe Price Chopper, Lancaster, Wild Harvest, Shaw BJ Ford Brothers a Krkonôš obchodoch. Každé balenie niesol číslo "EST. <br><br>Ceníme si aj upokojiť psami stabilné temperament .. Vancouver bude hostiť obrie TED technologickej konferencii v budúcom roku. TED je známy pre jeho motto "Ideas Worth Šírenie". Amritsar, indickej chemickej spoločnosti (ics), Kolkata získal profesor v. Hmmm ok, tak sa cítim trápne. Práve som dostal požiadavku na facebook priateľstva a správy od tohto muža, a to čítalo "Videl som vaše BFL obrázky, a naozaj som ako oni".<ul>
The notation ~ here means that the sum represents the function in some sense. In order to investigate this more carefully, the partial sums need to be defined:
 
 
  <li>[http://www.5sds.cn/news/html/?4970.html http://www.5sds.cn/news/html/?4970.html]</li>
:<math>S_N(f;t)=\sum_{n=-N}^N \widehat{f}(n)e^{int}.</math>
 
 
  <li>[http://wiki.nexxme.com/index.php?title=User:Jwpwzhfer#.C4.8Do_by_malo_by.C5.A5_odstr.C3.A1nen.C3.A1_Longchamp_Kabelky http://wiki.nexxme.com/index.php?title=User:Jwpwzhfer#.C4.8Do_by_malo_by.C5.A5_odstr.C3.A1nen.C3.A1_Longchamp_Kabelky]</li>
The question we will be interested in is: Do the functions <math>S_N(f)</math> (which are functions of the variable ''t'' we omitted in the notation) converge to ''&fnof;'' and in which sense? Are there conditions on ''&fnof;'' ensuring this or that type of convergence? This is the main problem discussed in this article.
 
 
  <li>[http://www.qingquzu.com/forum.php?mod=viewthread&tid=616945 http://www.qingquzu.com/forum.php?mod=viewthread&tid=616945]</li>
Before continuing the [[Dirichlet kernel]] needs to be introduced. Taking the formula for <math>\widehat{f}(n)</math>, inserting it into the formula for <math>S_N</math> and doing some algebra will give that
 
 
  <li>[http://www.film-video-dvd-production.com/spip.php?article6/ http://www.film-video-dvd-production.com/spip.php?article6/]</li>
:<math>S_N(f)=f * D_N\,</math>
 
 
  <li>[http://admin.co.nl/forum.php?mod=viewthread&tid=15621&fromuid=4508 http://admin.co.nl/forum.php?mod=viewthread&tid=15621&fromuid=4508]</li>
where &lowast; stands for the periodic [[convolution]] and <math>D_N</math> is the Dirichlet kernel which has an explicit formula,
 
 
</ul>
:<math>D_n(t)=\frac{\sin((n+\frac{1}{2})t)}{\sin(t/2)}.</math>
 
The Dirichlet kernel is ''not'' a positive kernel, and in fact, its norm diverges, namely
 
:<math>\int |D_n(t)|\,dt \to \infty </math>
 
a fact that will play a crucial role in the discussion. The norm of ''D''<sub>''n''</sub> in ''L''<sup>1</sup>('''T''') coincides with the norm of the convolution operator with ''D''<sub>''n''</sub>,
acting on the space ''C''('''T''') of periodic continuous functions, or with the norm of the linear functional ''&fnof;''&nbsp;&rarr; (''S''<sub>''n''</sub>''&fnof;'')(0) on ''C''('''T'''). Hence, this family of linear functionals on ''C''('''T''') is unbounded, when ''n''&nbsp;&rarr;&nbsp;&infin;.
 
==Magnitude of Fourier coefficients==
In applications, it is often useful to know the size of the Fourier coefficient.
 
If <math>f</math> is an [[absolutely continuous]] function,
:<math>\left|\widehat f(n)\right|\le {K \over |n|}</math>
for <math>K</math> a constant that only depends on <math>f</math>.
 
If <math>f</math> is a [[bounded variation]] function,
:<math>\left|\widehat f(n)\right|\le {{\rm var}(f)\over 2\pi|n|}</math>
 
If <math>f\in C^p</math>
:<math>\left|\widehat{f}(n)\right|\le {\| f^{(p)}\|_{L_1}\over |n|^p}</math>
 
If <math>f\in C^p</math> and <math>f^{(p)}</math> has [[modulus of continuity]] {{Citation needed|date=February 2011}}<math>\omega_p</math>,
:<math>\left|\widehat{f}(n)\right|\le {\omega(2\pi/n)\over |n|^p} </math>
 
and therefore, if <math>f</math> is in the α-[[Hölder class]]
:<math>\left|\widehat{f}(n)\right|\le {K\over |n|^\alpha}</math>
 
==Pointwise convergence==
[[File:Sawtooth Fourier Analysis.JPG|thumb|280px|Superposition of sinusoidal wave basis functions (bottom) to form a sawtooth wave (top); the basis functions have [[wavelength]]s λ/''k'' (''k''=integer) shorter than the wavelength λ of the sawtooth itself (except for ''k''=1). All basis functions have nodes at the nodes of the sawtooth, but all but the fundamental have additional nodes. The oscillation about the sawtooth is called the [[Gibbs phenomenon]]]]
There are many known sufficient conditions for the Fourier series of a function to converge at a given point ''x'', for example if the function is [[differentiable]] at ''x''. Even a jump discontinuity does not pose a problem: if the function has left and right derivatives at ''x'', then the Fourier series will converge to the average of the left and right limits (but see [[Gibbs phenomenon]]).
 
The '''Dirichlet&ndash;Dini Criterion''' states that: if ''&fnof;'' is 2&pi;&ndash;periodic, locally integrable and satisfies
 
:<math>\int_0^{\pi} \Bigl| \frac{f(x_0 + t) + f(x_0 - t)}2 - \ell \Bigr| \, \frac{\mathrm{d}t }{t} < \infty,</math>
 
then (S<sub>''n''</sub>''&fnof;'')(''x''<sub>0</sub>) converges to ℓ. This implies that for any function ''&fnof;'' of any [[Hölder condition|Hölder class]] ''&alpha;''&nbsp;> 0,  the Fourier series converges everywhere to ''&fnof;''(''x'').
 
It is also known that for any periodic function of [[bounded variation]], the Fourier series converges everywhere. See also [[Dini test]].
 
There exists a continuous function whose Fourier series converges pointwise, but not uniformly; see Antoni Zygmund, Trigonometric Series, vol. 1, Chapter 8, Theorem 1.13, p.&nbsp;300.
 
However, the Fourier series of a [[continuous function]] need not converge pointwise. Perhaps the easiest proof  uses the non-boundedness of Dirichlet's kernel in ''L''<sup>1</sup>('''T''') and the Banach&ndash;Steinhaus [[uniform boundedness principle]]. As typical for existence arguments invoking the [[Baire category theorem]], this proof is nonconstructive. It shows that the family of continuous functions whose Fourier series converges at a given ''x'' is of [[Baire space|first Baire category]], in the [[Banach space]] of continuous functions on the circle. So in some sense pointwise convergence is ''atypical'', and for most continuous functions the Fourier series does not converge at a given point. However [[Carleson's theorem]] shows that for a given continuous function the Fourier series converges almost everywhere.
 
==Uniform convergence==
Suppose <math>f\in C^p</math>, and <math>f^{(p)}</math> has [[modulus of continuity]] <math>\omega</math> (we assume here that <math>\omega</math> is also non decreasing), then the partial sum of the Fourier series converges to the function with speed<ref>Jackson (1930), p21ff.</ref>
 
:<math>|f(x)-(S_Nf)(x)|\le K {\ln N \over N^p}\omega(2\pi/N)</math>
for a constant <math>K</math> that does not depend upon <math>f </math>, nor <math>p</math>,  nor <math>N</math>.
 
This theorem, first proved by D Jackson, tells, for example,  that if <math>f</math> satisfies the  <math>\alpha</math>-[[Hölder condition]], then
 
:<math>|f(x)-(S_Nf)(x)|\le K {\ln N\over N^\alpha}</math>
 
If <math>f</math> is <math>2\pi</math> periodic and absolutely continuous on <math>[0,2\pi]</math>, then the Fourier series of <math>f</math> converges uniformly, but not necessarily absolutely, to <math>f</math>.<ref>Stromberg (1981), Exercise 6 (d) on p.&nbsp;519 and Exercise 7 (c) on p.&nbsp;520.</ref>
 
==Absolute convergence==
 
A function ''&fnof;'' has an [[Absolute convergence|absolutely converging]] Fourier series if
 
:<math>\|f\|_A:=\sum_{n=-\infty}^\infty |\widehat{f}(n)|<\infty.</math>
 
Obviously, if this condition holds then <math>(S_N f)(t)</math> converges absolutely for every ''t'' and on the other hand, it is enough that <math>(S_N f)(t)</math> converges absolutely for even one ''t'', then this
condition will hold. In other words, for absolute convergence there is no issue of ''where'' the sum converges absolutely &mdash; if it converges absolutely at one point then it does so everywhere.
 
The family of all functions with absolutely converging Fourier series is a [[Banach algebra]] (the operation of multiplication in the algebra is a simple multiplication of functions). It is called the [[Wiener algebra]], after [[Norbert Wiener]], who proved that if ''&fnof;'' has absolutely converging Fourier
series and is never zero, then 1/''&fnof;'' has absolutely converging Fourier series. The original proof of Wiener's theorem was difficult; a simplification using the theory of Banach algebras was given by [[Israel Gelfand]]. Finally, a short elementary proof was given by [[Donald J. Newman]] in 1975.
 
If <math>f</math> belongs to a α-Hölder class for α&nbsp;> 1/2 then
 
:<math>\|f\|_A\le c_\alpha \|f\|_{{\rm Lip}_\alpha},\qquad
\|f\|_K:=\sum_{n=-\infty}^{+\infty} |n| |\widehat{f}(n)|^2\le  c_\alpha \|f\|^2_{{\rm Lip}_\alpha}</math>
 
for <math>\|f\|_{{\rm Lip}_\alpha}</math> the constant in the
[[Hölder condition]], <math>c_\alpha</math> a constant only dependent on  <math>\alpha</math>; <math>\|f\|_K</math> is the norm of the Krein algebra.  Notice that the 1/2 here is essential&mdash;there are 1/2-Hölder functions which do not belong to the Wiener algebra. Besides, this theorem cannot improve the best known bound on the size of the Fourier coefficient of a α-Hölder function—that is only <math>O(1/n^\alpha)</math> and then not summable.
 
If ''&fnof;'' is of [[bounded variation]] ''and'' belongs to a α-Hölder class for some α&nbsp;>&nbsp;0, it belongs to the Wiener algebra.
 
==Norm convergence==
 
The simplest case is that of [[Lp space|''L''<sup>2</sup>]], which is a direct transcription of general [[Hilbert space]] results. According to the [[Riesz&ndash;Fischer theorem]], if ''&fnof;'' is [[square-integrable]] then
 
:<math>\lim_{N\rightarrow\infty}\int_0^{2\pi}\left|f(x)-S_N(f)
\right|^2\,dx=0</math>
 
''i.e.'',&thinsp; <math>S_N f</math> converges to ''&fnof;'' in the norm of ''L''<sup>2</sup>. It is easy to see that the converse is also true: if the limit above is zero, ''&fnof;'' must be in ''L''<sup>2</sup>. So this is an [[if and only if]] condition.
 
If 2 in the exponents above is replaced with some ''p'', the question becomes much harder. It turns out that the convergence still holds if 1&nbsp;< ''p''&nbsp;< &infin;. In other words, for ''&fnof;'' in [[Lp space|''L''<sup>p</sup>]],&thinsp; <math>S_N(f)</math> converges to ''&fnof;'' in the ''L''<sup>''p''</sup> norm. The original proof uses properties of [[holomorphic function]]s and [[Hardy space]]s, and another proof, due to [[Salomon Bochner]] relies upon the [[Riesz&ndash;Thorin theorem|Riesz&ndash;Thorin interpolation theorem]]. For ''p''&nbsp;=&nbsp;1 and infinity,  the result is not true. The construction of an example of divergence in  ''L''<sup>1</sup> was first done by [[Andrey Kolmogorov]] (see below). For infinity, the result is a more or less trivial corollary of the [[uniform boundedness principle]].
 
If the partial summation operator ''S<sub>N</sub>'' is replaced by a suitable summability kernel (for example the ''Fejér sum'' obtained by convolution with the [[Fejér kernel]]), basic functional analytic techniques can be applied to show that norm convergence holds for&nbsp;1&nbsp;&le;&nbsp;''p''&nbsp;<&nbsp;∞.
 
==Convergence almost everywhere==
 
The problem whether the Fourier series of any continuous function converges [[almost everywhere]] was posed by [[Nikolai Lusin]] in the 1920s and remained open until finally resolved positively in 1966 by [[Lennart Carleson]]. Indeed, Carleson showed that the Fourier expansion of any function in ''L''<sup>2</sup> converges almost everywhere. This result is now known as [[Carleson's theorem]].  Later on [[Richard Hunt (mathematician)|Richard Hunt]] generalized this to ''L''<sup>''p''</sup> for any ''p''&nbsp;> 1. Despite a number of attempts at simplifying the proof, it is still one of the most difficult results in analysis.
 
Contrariwise, [[Andrey Kolmogorov]], in his very first paper published when he was 21, constructed an example of a function in ''L''<sup>1</sup> whose Fourier series diverges almost everywhere (later improved to divergence everywhere).
 
It might be interesting to note that [[Jean-Pierre Kahane]] and [[Yitzhak Katznelson (mathematician)|Yitzhak Katznelson]] proved that for any given set ''E'' of [[measure (mathematics)|measure]] zero, there exists a continuous function ''&fnof;'' such that the Fourier series of ''&fnof;'' fails to converge on any point
of ''E''.
 
==Summability==
 
Does the sequence 0,1,0,1,0,1,... (the partial sums of [[Grandi's series]]) converge to ½? This does not seem like a very unreasonable generalization of the notion of convergence. Hence we say that any sequence <math>a_n</math> is [[Cesàro mean|Cesàro summable]] to some ''a'' if
 
:<math>\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n a_k=a.</math>
 
It is not difficult to see that if a sequence converges to some ''a'' then it is also [[Cesàro mean|Cesàro summable]] to it.
 
To discuss summability of Fourier series, we must replace <math>S_N</math> with an appropriate notion. Hence we define
 
:<math>K_N(f;t)=\frac{1}{N}\sum_{n=0}^{N-1} S_n(f;t), \quad N \ge 1,</math>
 
and ask: does <math>K_N(f)</math> converge to ''f''? <math>K_N </math> is no longer
associated with Dirichlet's kernel, but with [[Fejér kernel|Fejér's kernel]], namely
 
:<math>K_N(f)=f*F_N\,</math>
 
where <math>F_N</math> is Fejér's kernel,
 
:<math>F_N=\frac{1}{N}\sum_{n=0}^{N-1} D_n.</math>
 
The main difference is that Fejér's kernel is a positive kernel. [[Fejér's theorem]] states that the above sequence of partial sums converge uniformly to ''&fnof;''. This implies much better convergence properties
 
* If ''&fnof;'' is continuous at ''t'' then the Fourier series of ''&fnof;'' is summable at ''t'' to ''&fnof;''(''t''). If ''&fnof;'' is continuous, its Fourier series is uniformly summable (i.e. <math>K_N f</math> converges uniformly to ''&fnof;'').
* For any integrable ''&fnof;'', <math>K_N f</math> converges to ''&fnof;'' in the <math>L^1</math> norm.
* There is no Gibbs phenomenon.
 
Results about summability can also imply results about regular convergence. For example, we learn that if ''&fnof;'' is continuous at ''t'', then the Fourier series of ''&fnof;'' cannot converge to a value different from ''&fnof;''(''t''). It may either converge to ''&fnof;''(''t'') or diverge. This is because, if <math>S_N(f;t)</math> converges to some value ''x'', it is also summable to it, so from the first summability property above, ''x''&nbsp;= ''&fnof;''(''t'').
 
==Order of growth==
 
The order of growth of Dirichlet's kernel is logarithmic, i.e.
 
:<math>\int |D_N(t)|\,dt = \frac{4}{\pi^2}\log N+O(1).</math>
 
See [[Big O notation]] for the notation ''O''(1). It should be noted that the actual value <math>4/\pi^2</math> is both difficult to calculate (see Zygmund 8.3) and of almost no use. The fact that for ''some'' constant ''c'' we have
 
:<math>\int |D_N(t)|\,dt > c\log N+O(1)</math>
 
is quite clear when one examines the graph of Dirichlet's kernel. The integral over the ''n''-th peak is bigger than ''c''/''n'' and therefore the estimate for the [[Harmonic series (mathematics)|harmonic sum]] gives the logarithmic estimate.
 
This estimate entails quantitative versions of some of the previous results. For any continuous function ''f'' and any ''t'' one has
 
:<math>\lim_{N\to\infty} \frac{S_N(f;t)}{\log N}=0.</math>
 
However, for any order of growth ω(''n'') smaller than log, this no longer holds and it is possible to find a continuous function ''f'' such that for some ''t'',
 
:<math>\varlimsup_{N\to\infty} \frac{S_N(f;t)}{\omega(N)}=\infty.</math>
 
The equivalent problem for divergence everywhere is open. Sergei Konyagin managed to construct an integrable function such that for ''every t'' one has
 
:<math>\varlimsup_{N\to\infty} \frac{S_N(f;t)}{\sqrt{\log N}}=\infty.</math>
 
It is not known whether this example is best possible. The only bound from the other direction known is log ''n''.
 
==Multiple dimensions==
 
Upon examining the equivalent problem in more than one dimension, it is necessary to specify the precise order of summation one uses. For example, in two dimensions, one may define
 
:<math>S_N(f;t_1,t_2)=\sum_{|n_1|\leq N,|n_2|\leq N}\widehat{f}(n_1,n_2)e^{i(n_1 t_1+n_2 t_2)}</math>
 
which are known as "square partial sums". Replacing the sum above with
 
:<math>\sum_{n_1^2+n_2^2\leq N^2}</math>
 
lead to "circular partial sums". The difference between these two definitions is quite notable. For example, the norm of the corresponding Dirichlet kernel for square partial sums is of the order of <math>\log^2 N</math> while for circular partial sums it is of the order of <math>\sqrt{N}</math>.
 
Many of the results true for one dimension are wrong or unknown in multiple dimensions. In particular, the equivalent of Carleson's theorem is still open for circular partial sums. Almost everywhere convergence of "square partial sums" (as well as more general polygonal partial sums) in multiple dimensions was established around 1970 by Charles Fefferman.
 
==Notes==
{{reflist}}
 
==References==
 
===Textbooks===
*Dunham Jackson "The theory of Approximation", AMS Colloquium Publication Volume XI,  New York 1930.
* Nina K. Bary, ''A treatise on trigonometric series'', Vols. I, II. Authorized translation by Margaret F. Mullins. A Pergamon Press Book. The Macmillan Co., New York 1964.
* Antoni Zygmund, ''Trigonometric series'', Vol. I, II. Third edition. With a foreword by Robert A. Fefferman. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2002. ISBN 0-521-89053-5
* Yitzhak Katznelson, ''An introduction to harmonic analysis'', Third edition. Cambridge University Press, Cambridge, 2004. ISBN 0-521-54359-2
* Karl R. Stromberg, "Introduction to classical analysis", Wadsworth International Group, 1981. ISBN 0-534-98012-0
:''The Katznelson book is the one using the most modern terminology and style of the three. The original publishing dates are: Zygmund in 1935, Bari in 1961 and Katznelson in 1968. Zygmund's book was greatly expanded in its second publishing in 1959, however.''
 
===Articles referred to in the text===
 
* Paul du Bois Reymond, ''Ueber die Fourierschen Reihen'', Nachr. Kön. Ges. Wiss. Göttingen '''21''' (1873), 571&ndash;582.
:This is the first proof that the Fourier series of a continuous function might diverge. In German
* [[Andrey Nikolaevich Kolmogorov|Andrey Kolmogorov]], ''Une série de Fourier&ndash;Lebesgue divergente presque partout'', Fundamenta math. '''4''' (1923), 324&ndash;328.
* Andrey Kolmogorov, ''Une série de Fourier&ndash;Lebesgue divergente partout'', C. R. Acad. Sci. Paris '''183''' (1926), 1327&ndash;1328
:The first is a construction of an integrable function whose Fourier series diverges almost everywhere. The second is a strengthening to divergence everywhere. In French.
* Lennart Carleson, ''On convergence and growth of partial sums of Fourier series'', Acta Math. '''116''' (1966) 135&ndash;157.
* [[Richard Hunt (mathematician)|Richard A. Hunt]], ''On the convergence of Fourier series'', Orthogonal Expansions and their Continuous Analogues (Proc. Conf., Edwardsville, Ill., 1967), 235&ndash;255. Southern Illinois Univ. Press, Carbondale, Ill.
* Charles Louis Fefferman, ''Pointwise convergence of Fourier series'', Ann. of Math. '''98''' (1973), 551&ndash;571.
* Michael Lacey and Christoph Thiele, ''A proof of boundedness of the Carleson operator'', Math. Res. Lett. '''7:4''' (2000), 361&ndash;370.
* Ole G. Jørsboe and Leif Mejlbro, ''The Carleson&ndash;Hunt theorem on Fourier series''. Lecture Notes in Mathematics 911, Springer-Verlag, Berlin-New York, 1982. ISBN 3-540-11198-0
:This is the original paper of Carleson, where he proves that the Fourier expansion of any continuous function converges almost everywhere; the paper of Hunt where he generalizes it to <math>L^p</math> spaces; two attempts at simplifying the proof; and a book that gives a self contained exposition of it.
* Dunham Jackson, ''Fourier Series and Orthogonal Polynomials'', 1963
* D. J. Newman,  ''A simple proof of Wiener's 1/f theorem'',  Proc. Amer. Math. Soc. '''48'''  (1975), 264&ndash;265.
* Jean-Pierre Kahane and Yitzhak Katznelson, ''Sur les ensembles de divergence des séries trigonométriques'', Studia Math. '''26''' (1966), 305&ndash;306
:In this paper the authors show that for any set of zero measure there exists a continuous function on the circle whose Fourier series diverges on that set. In French.
* Sergei Vladimirovich Konyagin, ''On divergence of trigonometric Fourier series everywhere'', C. R. Acad. Sci. Paris '''329''' (1999), 693&ndash;697.
* Jean-Pierre Kahane, ''Some random series of functions'', second edition. Cambridge University Press, 1993. ISBN 0-521-45602-9
:The Konyagin paper proves the <math>\sqrt{\log n}</math> divergence result discussed above. A simpler proof that gives only log&nbsp;log&nbsp;''n'' can be found in Kahane's book.
 
===External links===
* [http://www.encyclopediaofmath.org/index.php/Fourier_series Fourier series] at [http://www.encyclopediaofmath.org/ Encyclopedia of Mathematics]
* [http://www.encyclopediaofmath.org/index.php/Dini_criterion Dini criterion] at [http://www.encyclopediaofmath.org/ Encyclopedia of Mathematics]
 
[[Category:Fourier series]]

Revision as of 16:48, 30 October 2013

In mathematics, the question of whether the Fourier series of a periodic function converges to the given function is researched by a field known as classical harmonic analysis, a branch of pure mathematics. Convergence is not necessarily a given in the general case, and there are criteria which need to be met in order for convergence to occur.

Determination of convergence requires the comprehension of pointwise convergence, uniform convergence, absolute convergence, Lp spaces, summability methods and the Cesàro mean.

Preliminaries

Consider ƒ an integrable function on the interval [0,2π]. For such an ƒ the Fourier coefficients are defined by the formula

It is common to describe the connection between ƒ and its Fourier series by

The notation ~ here means that the sum represents the function in some sense. In order to investigate this more carefully, the partial sums need to be defined:

The question we will be interested in is: Do the functions (which are functions of the variable t we omitted in the notation) converge to ƒ and in which sense? Are there conditions on ƒ ensuring this or that type of convergence? This is the main problem discussed in this article.

Before continuing the Dirichlet kernel needs to be introduced. Taking the formula for , inserting it into the formula for and doing some algebra will give that

where ∗ stands for the periodic convolution and is the Dirichlet kernel which has an explicit formula,

The Dirichlet kernel is not a positive kernel, and in fact, its norm diverges, namely

a fact that will play a crucial role in the discussion. The norm of Dn in L1(T) coincides with the norm of the convolution operator with Dn, acting on the space C(T) of periodic continuous functions, or with the norm of the linear functional ƒ → (Snƒ)(0) on C(T). Hence, this family of linear functionals on C(T) is unbounded, when n → ∞.

Magnitude of Fourier coefficients

In applications, it is often useful to know the size of the Fourier coefficient.

If is an absolutely continuous function,

for a constant that only depends on .

If is a bounded variation function,

If

If and has modulus of continuity Potter or Ceramic Artist Truman Bedell from Rexton, has interests which include ceramics, best property developers in singapore developers in singapore and scrabble. Was especially enthused after visiting Alejandro de Humboldt National Park.,

and therefore, if is in the α-Hölder class

Pointwise convergence

Superposition of sinusoidal wave basis functions (bottom) to form a sawtooth wave (top); the basis functions have wavelengths λ/k (k=integer) shorter than the wavelength λ of the sawtooth itself (except for k=1). All basis functions have nodes at the nodes of the sawtooth, but all but the fundamental have additional nodes. The oscillation about the sawtooth is called the Gibbs phenomenon

There are many known sufficient conditions for the Fourier series of a function to converge at a given point x, for example if the function is differentiable at x. Even a jump discontinuity does not pose a problem: if the function has left and right derivatives at x, then the Fourier series will converge to the average of the left and right limits (but see Gibbs phenomenon).

The Dirichlet–Dini Criterion states that: if ƒ is 2π–periodic, locally integrable and satisfies

then (Snƒ)(x0) converges to ℓ. This implies that for any function ƒ of any Hölder class α > 0, the Fourier series converges everywhere to ƒ(x).

It is also known that for any periodic function of bounded variation, the Fourier series converges everywhere. See also Dini test.

There exists a continuous function whose Fourier series converges pointwise, but not uniformly; see Antoni Zygmund, Trigonometric Series, vol. 1, Chapter 8, Theorem 1.13, p. 300.

However, the Fourier series of a continuous function need not converge pointwise. Perhaps the easiest proof uses the non-boundedness of Dirichlet's kernel in L1(T) and the Banach–Steinhaus uniform boundedness principle. As typical for existence arguments invoking the Baire category theorem, this proof is nonconstructive. It shows that the family of continuous functions whose Fourier series converges at a given x is of first Baire category, in the Banach space of continuous functions on the circle. So in some sense pointwise convergence is atypical, and for most continuous functions the Fourier series does not converge at a given point. However Carleson's theorem shows that for a given continuous function the Fourier series converges almost everywhere.

Uniform convergence

Suppose , and has modulus of continuity (we assume here that is also non decreasing), then the partial sum of the Fourier series converges to the function with speed[1]

for a constant that does not depend upon , nor , nor .

This theorem, first proved by D Jackson, tells, for example, that if satisfies the -Hölder condition, then

If is periodic and absolutely continuous on , then the Fourier series of converges uniformly, but not necessarily absolutely, to .[2]

Absolute convergence

A function ƒ has an absolutely converging Fourier series if

Obviously, if this condition holds then converges absolutely for every t and on the other hand, it is enough that converges absolutely for even one t, then this condition will hold. In other words, for absolute convergence there is no issue of where the sum converges absolutely — if it converges absolutely at one point then it does so everywhere.

The family of all functions with absolutely converging Fourier series is a Banach algebra (the operation of multiplication in the algebra is a simple multiplication of functions). It is called the Wiener algebra, after Norbert Wiener, who proved that if ƒ has absolutely converging Fourier series and is never zero, then 1/ƒ has absolutely converging Fourier series. The original proof of Wiener's theorem was difficult; a simplification using the theory of Banach algebras was given by Israel Gelfand. Finally, a short elementary proof was given by Donald J. Newman in 1975.

If belongs to a α-Hölder class for α > 1/2 then

for the constant in the Hölder condition, a constant only dependent on ; is the norm of the Krein algebra. Notice that the 1/2 here is essential—there are 1/2-Hölder functions which do not belong to the Wiener algebra. Besides, this theorem cannot improve the best known bound on the size of the Fourier coefficient of a α-Hölder function—that is only and then not summable.

If ƒ is of bounded variation and belongs to a α-Hölder class for some α > 0, it belongs to the Wiener algebra.

Norm convergence

The simplest case is that of L2, which is a direct transcription of general Hilbert space results. According to the Riesz–Fischer theorem, if ƒ is square-integrable then

i.e.,  converges to ƒ in the norm of L2. It is easy to see that the converse is also true: if the limit above is zero, ƒ must be in L2. So this is an if and only if condition.

If 2 in the exponents above is replaced with some p, the question becomes much harder. It turns out that the convergence still holds if 1 < p < ∞. In other words, for ƒ in Lp,  converges to ƒ in the Lp norm. The original proof uses properties of holomorphic functions and Hardy spaces, and another proof, due to Salomon Bochner relies upon the Riesz–Thorin interpolation theorem. For p = 1 and infinity, the result is not true. The construction of an example of divergence in L1 was first done by Andrey Kolmogorov (see below). For infinity, the result is a more or less trivial corollary of the uniform boundedness principle.

If the partial summation operator SN is replaced by a suitable summability kernel (for example the Fejér sum obtained by convolution with the Fejér kernel), basic functional analytic techniques can be applied to show that norm convergence holds for 1 ≤ p < ∞.

Convergence almost everywhere

The problem whether the Fourier series of any continuous function converges almost everywhere was posed by Nikolai Lusin in the 1920s and remained open until finally resolved positively in 1966 by Lennart Carleson. Indeed, Carleson showed that the Fourier expansion of any function in L2 converges almost everywhere. This result is now known as Carleson's theorem. Later on Richard Hunt generalized this to Lp for any p > 1. Despite a number of attempts at simplifying the proof, it is still one of the most difficult results in analysis.

Contrariwise, Andrey Kolmogorov, in his very first paper published when he was 21, constructed an example of a function in L1 whose Fourier series diverges almost everywhere (later improved to divergence everywhere).

It might be interesting to note that Jean-Pierre Kahane and Yitzhak Katznelson proved that for any given set E of measure zero, there exists a continuous function ƒ such that the Fourier series of ƒ fails to converge on any point of E.

Summability

Does the sequence 0,1,0,1,0,1,... (the partial sums of Grandi's series) converge to ½? This does not seem like a very unreasonable generalization of the notion of convergence. Hence we say that any sequence is Cesàro summable to some a if

It is not difficult to see that if a sequence converges to some a then it is also Cesàro summable to it.

To discuss summability of Fourier series, we must replace with an appropriate notion. Hence we define

and ask: does converge to f? is no longer associated with Dirichlet's kernel, but with Fejér's kernel, namely

where is Fejér's kernel,

The main difference is that Fejér's kernel is a positive kernel. Fejér's theorem states that the above sequence of partial sums converge uniformly to ƒ. This implies much better convergence properties

Results about summability can also imply results about regular convergence. For example, we learn that if ƒ is continuous at t, then the Fourier series of ƒ cannot converge to a value different from ƒ(t). It may either converge to ƒ(t) or diverge. This is because, if converges to some value x, it is also summable to it, so from the first summability property above, x = ƒ(t).

Order of growth

The order of growth of Dirichlet's kernel is logarithmic, i.e.

See Big O notation for the notation O(1). It should be noted that the actual value is both difficult to calculate (see Zygmund 8.3) and of almost no use. The fact that for some constant c we have

is quite clear when one examines the graph of Dirichlet's kernel. The integral over the n-th peak is bigger than c/n and therefore the estimate for the harmonic sum gives the logarithmic estimate.

This estimate entails quantitative versions of some of the previous results. For any continuous function f and any t one has

However, for any order of growth ω(n) smaller than log, this no longer holds and it is possible to find a continuous function f such that for some t,

The equivalent problem for divergence everywhere is open. Sergei Konyagin managed to construct an integrable function such that for every t one has

It is not known whether this example is best possible. The only bound from the other direction known is log n.

Multiple dimensions

Upon examining the equivalent problem in more than one dimension, it is necessary to specify the precise order of summation one uses. For example, in two dimensions, one may define

which are known as "square partial sums". Replacing the sum above with

lead to "circular partial sums". The difference between these two definitions is quite notable. For example, the norm of the corresponding Dirichlet kernel for square partial sums is of the order of while for circular partial sums it is of the order of .

Many of the results true for one dimension are wrong or unknown in multiple dimensions. In particular, the equivalent of Carleson's theorem is still open for circular partial sums. Almost everywhere convergence of "square partial sums" (as well as more general polygonal partial sums) in multiple dimensions was established around 1970 by Charles Fefferman.

Notes

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

References

Textbooks

  • Dunham Jackson "The theory of Approximation", AMS Colloquium Publication Volume XI, New York 1930.
  • Nina K. Bary, A treatise on trigonometric series, Vols. I, II. Authorized translation by Margaret F. Mullins. A Pergamon Press Book. The Macmillan Co., New York 1964.
  • Antoni Zygmund, Trigonometric series, Vol. I, II. Third edition. With a foreword by Robert A. Fefferman. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2002. ISBN 0-521-89053-5
  • Yitzhak Katznelson, An introduction to harmonic analysis, Third edition. Cambridge University Press, Cambridge, 2004. ISBN 0-521-54359-2
  • Karl R. Stromberg, "Introduction to classical analysis", Wadsworth International Group, 1981. ISBN 0-534-98012-0
The Katznelson book is the one using the most modern terminology and style of the three. The original publishing dates are: Zygmund in 1935, Bari in 1961 and Katznelson in 1968. Zygmund's book was greatly expanded in its second publishing in 1959, however.

Articles referred to in the text

  • Paul du Bois Reymond, Ueber die Fourierschen Reihen, Nachr. Kön. Ges. Wiss. Göttingen 21 (1873), 571–582.
This is the first proof that the Fourier series of a continuous function might diverge. In German
  • Andrey Kolmogorov, Une série de Fourier–Lebesgue divergente presque partout, Fundamenta math. 4 (1923), 324–328.
  • Andrey Kolmogorov, Une série de Fourier–Lebesgue divergente partout, C. R. Acad. Sci. Paris 183 (1926), 1327–1328
The first is a construction of an integrable function whose Fourier series diverges almost everywhere. The second is a strengthening to divergence everywhere. In French.
  • Lennart Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966) 135–157.
  • Richard A. Hunt, On the convergence of Fourier series, Orthogonal Expansions and their Continuous Analogues (Proc. Conf., Edwardsville, Ill., 1967), 235–255. Southern Illinois Univ. Press, Carbondale, Ill.
  • Charles Louis Fefferman, Pointwise convergence of Fourier series, Ann. of Math. 98 (1973), 551–571.
  • Michael Lacey and Christoph Thiele, A proof of boundedness of the Carleson operator, Math. Res. Lett. 7:4 (2000), 361–370.
  • Ole G. Jørsboe and Leif Mejlbro, The Carleson–Hunt theorem on Fourier series. Lecture Notes in Mathematics 911, Springer-Verlag, Berlin-New York, 1982. ISBN 3-540-11198-0
This is the original paper of Carleson, where he proves that the Fourier expansion of any continuous function converges almost everywhere; the paper of Hunt where he generalizes it to spaces; two attempts at simplifying the proof; and a book that gives a self contained exposition of it.
  • Dunham Jackson, Fourier Series and Orthogonal Polynomials, 1963
  • D. J. Newman, A simple proof of Wiener's 1/f theorem, Proc. Amer. Math. Soc. 48 (1975), 264–265.
  • Jean-Pierre Kahane and Yitzhak Katznelson, Sur les ensembles de divergence des séries trigonométriques, Studia Math. 26 (1966), 305–306
In this paper the authors show that for any set of zero measure there exists a continuous function on the circle whose Fourier series diverges on that set. In French.
  • Sergei Vladimirovich Konyagin, On divergence of trigonometric Fourier series everywhere, C. R. Acad. Sci. Paris 329 (1999), 693–697.
  • Jean-Pierre Kahane, Some random series of functions, second edition. Cambridge University Press, 1993. ISBN 0-521-45602-9
The Konyagin paper proves the divergence result discussed above. A simpler proof that gives only log log n can be found in Kahane's book.

External links

  1. Jackson (1930), p21ff.
  2. Stromberg (1981), Exercise 6 (d) on p. 519 and Exercise 7 (c) on p. 520.