Free-electron laser: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>JorisvS
 
en>JorisvS
→‎top: terms are coined not invented
Line 1: Line 1:
In [[mathematics]], the '''multivariate gamma function''', Γ<sub>''p''</sub>(·), is a generalization of the [[gamma function]]. It is useful in [[multivariate statistics]], appearing in the [[probability density function]] of the [[Wishart distribution|Wishart]] and [[inverse Wishart distribution]]s.
Glazier Alfonzo from Alma, spends time with hobbies and interests for instance snowshoeing, property developers in singapore and creating a house. Will soon undertake a contiki journey that will consist of taking a trip to the Lumbini.<br><br>Here is my web blog: [http://tukarposisi.com/groups/property-news-in-singapore/ tukarposisi.com]
 
It has two equivalent definitions. One is
 
:<math>
\Gamma_p(a)=
\int_{S>0} \exp\left(
-{\rm trace}(S)\right)
\left|S\right|^{a-(p+1)/2}
dS ,
</math>
where S>0 means S is [[positive-definite matrix|positive-definite]]. The other one, more useful in practice, is
 
:<math>
\Gamma_p(a)=
\pi^{p(p-1)/4}\prod_{j=1}^p
\Gamma\left[ a+(1-j)/2\right].
</math>
From this, we have the recursive relationships:
:<math>
\Gamma_p(a) = \pi^{(p-1)/2} \Gamma(a) \Gamma_{p-1}(a-\tfrac{1}{2}) = \pi^{(p-1)/2} \Gamma_{p-1}(a) \Gamma[a+(1-p)/2] .
</math>
 
Thus
 
* <math>\Gamma_1(a)=\Gamma(a)</math>
* <math>\Gamma_2(a)=\pi^{1/2}\Gamma(a)\Gamma(a-1/2)</math>
* <math>\Gamma_3(a)=\pi^{3/2}\Gamma(a)\Gamma(a-1/2)\Gamma(a-1)</math>
 
and so on.
 
== Derivatives ==
 
We may define the multivariate [[digamma function]] as
:<math>\psi_p(a) = \frac{\partial \log\Gamma_p(a)}{\partial a} = \sum_{i=1}^p \psi(a+(1-i)/2) ,</math>
and the general [[polygamma function]] as
:<math>\psi_p^{(n)}(a) = \frac{\partial^n \log\Gamma_p(a)}{\partial a^n} = \sum_{i=1}^p \psi^{(n)}(a+(1-i)/2).</math>
 
=== Calculation steps ===
 
* Since
::<math>\Gamma_p(a) = \pi^{p(p-1)/4}\prod_{j=1}^p \Gamma(a+\frac{1-j}{2}),</math>
:it follows that
::<math>\frac{\partial \Gamma_p(a)}{\partial a} = \pi^{p(p-1)/4}\sum_{i=1}^p \frac{\partial\Gamma(a+\frac{1-i}{2})}{\partial a}\prod_{j=1, j\neq i}^p\Gamma(a+\frac{1-j}{2}).</math>
 
* By definition of the [[digamma function]], &psi;,
::<math>\frac{\partial\Gamma(a+(1-i)/2)}{\partial a} = \psi(a+(i-1)/2)\Gamma(a+(i-1)/2)</math>
 
:it follows that
::<math>\frac{\partial \Gamma_p(a)}{\partial a} = \pi^{p(p-1)/4}\prod_{j=1}^p \Gamma(a+(1-j)/2) \sum_{i=1}^p \psi(a+(1-i)/2) = \Gamma_p(a)\sum_{i=1}^p \psi(a+(1-i)/2).</math>
 
{{single source|date=May 2012}}
{{inline|date=May 2012}}
==References==
* {{cite journal
|title=Distributions of Matrix Variates and Latent Roots Derived from Normal Samples
|last=James |first=A.
|journal=[[Annals of Mathematical Statistics]]
|volume=35 |issue=2 |year=1964 |pages=475&ndash;501
|doi=10.1214/aoms/1177703550 |mr=181057 | zbl = 0121.36605
}}
 
[[Category:Gamma and related functions]]

Revision as of 10:23, 21 February 2014

Glazier Alfonzo from Alma, spends time with hobbies and interests for instance snowshoeing, property developers in singapore and creating a house. Will soon undertake a contiki journey that will consist of taking a trip to the Lumbini.

Here is my web blog: tukarposisi.com