Ising model: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Qazqaz1990
en>HeMath
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
In [[quantum field theory]], the '''Dirac spinor''' is the [[bispinor]] in the [[Plane wave|plane-wave]] solution
:<math>\psi = \omega_\vec{p}\;e^{-ipx} \;</math>
of the free [[Dirac equation]],
:<math>(i\gamma^\mu\partial_{\mu}-m)\psi=0 \;,</math>
where (in the units <math>\scriptstyle c \,=\, \hbar \,=\, 1</math>)
:<math>\scriptstyle\psi</math> is a [[Theory of relativity|relativistic]] [[spin-1/2]] [[Field (physics)|field]],
:<math>\scriptstyle\omega_\vec{p}</math> is the Dirac [[spinor]] related to a plane-wave with [[wave-vector]] <math>\scriptstyle\vec{p}</math>,
:<math>\scriptstyle px \;\equiv\; p_\mu x^\mu</math>,
:<math>\scriptstyle p^\mu \;=\; \{\pm\sqrt{m^2+\vec{p}^2},\, \vec{p}\}</math> is the four-wave-vector of the plane wave, where <math>\scriptstyle\vec{p}</math> is arbitrary,
:<math>\scriptstyle x^\mu</math> are the four-coordinates in a given [[inertial frame]] of reference.


The Dirac spinor for the positive-frequency solution can be written as
:<math>
\omega_\vec{p} =
\begin{bmatrix}
\phi \\ \frac{\vec{\sigma}\vec{p}}{E_{\vec{p}} + m} \phi
\end{bmatrix} \;,
</math>
where
:<math>\scriptstyle\phi</math> is an arbitrary two-spinor,
:<math>\scriptstyle\vec{\sigma}</math> are the [[Pauli matrices]],
:<math>\scriptstyle E_\vec{p}</math> is the positive square root <math>\scriptstyle E_{\vec{p}} \;=\; +\sqrt{m^2+\vec{p}^2}</math>


==Derivation from Dirac equation==
Son is what is created on my start certification and I fully appreciate this identify. My working day job is a hotel receptionist. My friends say it is really not good for me but what I love carrying out is gardening but I am contemplating on starting up anything new. [http://www.Twitpic.com/tag/Colorado Colorado] is the location I really like most. I am running and keeping a blog right here: http://bigdata.ihep.ac.cn/bigdata/view_[https://Www.Google.com/search?hl=en&gl=us&tbm=nws&q=profile.php&btnI=lucky profile.php]?userid=1155931<br><br>Also visit my website ... [http://bigdata.ihep.ac.cn/bigdata/view_profile.php?userid=1155931 Underwear Calvin Klein]
The Dirac equation has the form
:<math>\left(-i \vec{\alpha} \cdot \vec{\nabla} + \beta m \right) \psi = i \frac{\partial \psi}{\partial t} \,</math>
 
In order to derive the form of the four-spinor <math>\scriptstyle\omega</math> we have to first note the value of the matrices α and β:
:<math>\vec\alpha = \begin{bmatrix} \mathbf{0} & \vec{\sigma} \\ \vec{\sigma} & \mathbf{0} \end{bmatrix} \quad \quad \beta = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & -\mathbf{I} \end{bmatrix} \,</math>
These two 4×4 matrices are related to the [[Gamma matrices|Dirac gamma matrices]]. Note that '''0''' and '''I''' are 2×2 matrices here.
 
The next step is to look for solutions of the form
:<math>\psi = \omega e^{-i p \cdot x}</math>,
while at the same time splitting ω into two two-spinors:
:<math>\omega = \begin{bmatrix}  \phi \\ \chi \end{bmatrix} \,</math>.
 
===Results===
Using all of the above information to plug into the Dirac equation results in
:<math>E \begin{bmatrix}  \phi \\ \chi \end{bmatrix} =
\begin{bmatrix} m \mathbf{I} & \vec{\sigma}\vec{p} \\ \vec{\sigma}\vec{p} & -m \mathbf{I} \end{bmatrix} \begin{bmatrix}  \phi \\ \chi \end{bmatrix} \,</math>.
 
This matrix equation is really two coupled equations:
:<math>\left(E - m \right) \phi = \left(\vec{\sigma}\vec{p} \right) \chi \,</math>
:<math>\left(E + m \right) \chi = \left(\vec{\sigma}\vec{p} \right) \phi \,</math>
 
Solve the 2nd equation for <math>\scriptstyle \chi \,</math> and one obtains
:<math>\omega = \begin{bmatrix}  \phi \\ \chi \end{bmatrix} = \begin{bmatrix}  \phi \\ \frac{\vec{\sigma}\vec{p}}{E + m} \phi \end{bmatrix} \,</math>.
 
Solve the 1st equation for <math>\phi \,</math> and one finds
:<math>\omega = \begin{bmatrix}  \phi \\ \chi \end{bmatrix} = \begin{bmatrix}  - \frac{\vec{\sigma}\vec{p}}{-E + m} \chi \\ \chi \end{bmatrix} \,</math>.
This solution is useful for showing the relation between [[anti-particle]] and particle.
 
==Details==
===Two-spinors===
The most convenient definitions for the two-spinors are:
:<math>\phi^1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \quad \phi^2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \,</math>
 
and
:<math>\chi^1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \quad \chi^2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \,</math>
 
===Pauli matrices===
The [[Pauli matrices]] are
:<math>
\sigma_1 =
\begin{bmatrix}
0&1\\
1&0
\end{bmatrix}
\quad \quad
\sigma_2 =
\begin{bmatrix}
0&-i\\
i&0
\end{bmatrix}
\quad \quad
\sigma_3 =
\begin{bmatrix}
1&0\\
0&-1
\end{bmatrix}
</math>
 
Using these, one can calculate:
:<math>\vec{\sigma}\vec{p} = \sigma_1 p_1 + \sigma_2 p_2 + \sigma_3 p_3 =
\begin{bmatrix}
p_3        & p_1 - i p_2 \\
p_1 + i p_2 & - p_3
\end{bmatrix}</math>
 
==Four-spinor for particles==
Particles are defined as having ''positive'' energy. The normalization for the four-spinor ω is chosen so that <math>\scriptstyle\omega^\dagger \omega \;=\; 2 E \,</math>  {{Elucidate|date=February 2012}}. These spinors are denoted as ''u'':
 
:<math> u(\vec{p}, s) = \sqrt{E+m}
\begin{bmatrix}
\phi^{(s)}\\
\frac{\vec{\sigma} \cdot \vec{p} }{E+m} \phi^{(s)}
\end{bmatrix} \,</math>
where ''s'' = 1 or 2 (spin "up" or "down")
 
Explicitly,
:<math>u(\vec{p}, 1) = \sqrt{E+m} \begin{bmatrix}
1\\
0\\
\frac{p_3}{E+m} \\
\frac{p_1 + i p_2}{E+m}
\end{bmatrix} \quad \mathrm{and} \quad
u(\vec{p}, 2) = \sqrt{E+m} \begin{bmatrix}
0\\
1\\
\frac{p_1 - i p_2}{E+m} \\
\frac{-p_3}{E+m}
\end{bmatrix} </math>
 
==Four-spinor for anti-particles==
Anti-particles having ''positive'' energy <math>\scriptstyle E</math> are defined as particles having ''negative'' energy and propagating backward in time.  Hence changing the sign of <math>\scriptstyle E</math> and <math>\scriptstyle \vec{p}</math> in the four-spinor for particles will give the four-spinor for anti-particles:
 
:<math> v(\vec{p},s) = \sqrt{E+m}
\begin{bmatrix}
\frac{\vec{\sigma} \cdot \vec{p} }{E+m} \chi^{(s)}\\
\chi^{(s)}
\end{bmatrix} \,</math>
 
Here we choose the <math>\scriptstyle\chi</math> solutions.  Explicitly,
:<math>v(\vec{p}, 1) = \sqrt{E+m} \begin{bmatrix}
\frac{p_1 - i p_2}{E+m} \\
\frac{-p_3}{E+m} \\
0\\
1
\end{bmatrix} \quad \mathrm{and} \quad
v(\vec{p}, 2) = \sqrt{E+m} \begin{bmatrix}
\frac{p_3}{E+m} \\
\frac{p_1 + i p_2}{E+m} \\
1\\
0\\
\end{bmatrix} </math>
 
==Completeness relations==
The completeness relations for the four-spinors ''u'' and ''v'' are
:<math>\sum_{s=1,2}{u^{(s)}_p \bar{u}^{(s)}_p} = p\!\!\!/ + m \,</math>
:<math>\sum_{s=1,2}{v^{(s)}_p \bar{v}^{(s)}_p} = p\!\!\!/ - m \,</math>
 
where
:<math>p\!\!\!/ = \gamma^\mu p_\mu  \,</math> &nbsp;&nbsp;&nbsp;&nbsp; (see [[Feynman slash notation#With four-momentum|Feynman slash notation]])
:<math>\bar{u} = u^{\dagger} \gamma^0 \,</math>
 
==Dirac spinors and the Dirac algebra==
The [[Dirac matrices]] are a set of four 4×4 [[Matrix (mathematics)|matrices]] that are used as [[Spin (physics)|spin]] and [[Charge (physics)|charge]] [[Operator (physics)|operators]].
 
===Conventions===
There are several choices of [[Signature (physics)|signature]] and [[Group representation|representation]] that are in common use in the physics literature. The Dirac matrices are typically written as <math>\scriptstyle \gamma^\mu</math> where <math>\scriptstyle \mu</math> runs from 0 to 3. In this notation, 0 corresponds to time, and 1 through 3 correspond to x, y, and z.
 
The + − − − [[Signature (physics)|signature]] is sometimes called the [[West Coast of the United States|west coast]] metric, while the − + + + is the [[East Coast of the United States|east coast]] metric. At this time the + − − − signature is in more common use, and our example will use this signature. To switch from one example to the other, multiply all <math>\scriptstyle\gamma^\mu</math> by <math>\scriptstyle i</math>.
 
After choosing the signature, there are many ways of constructing a representation in the 4&times;4 matrices, and many are in common use. In order to make this example as general as possible we will not specify a representation until the final step. At that time we will substitute in the [[Chirality (physics)|"chiral"]] or [[Hermann Weyl|"Weyl"]] representation as used in the popular graduate textbook ''An Introduction to Quantum Field Theory'' by [[Michael Peskin|Michael E. Peskin]] and [[Daniel Schroeder|Daniel V. Schroeder]].
 
===Construction of Dirac spinor with a given spin direction and charge===
First we choose a [[spin (physics)|spin]] direction for our electron or positron.  As with the example of the Pauli algebra discussed above, the spin direction is defined by a [[unit vector]] in 3 dimensions, (a, b, c).  Following the convention of Peskin & Schroeder, the spin operator for spin in the (a, b, c) direction is defined as the dot product of (a, b, c) with the vector
:<math>(i\gamma^2\gamma^3,\;\;i\gamma^3\gamma^1,\;\;i\gamma^1\gamma^2) = -(\gamma^1,\;\gamma^2,\;\gamma^3)i\gamma^1\gamma^2\gamma^3</math>
 
:<math>\sigma_{(a,b,c)} = ia\gamma^2\gamma^3 + ib\gamma^3\gamma^1 + ic\gamma^1\gamma^2</math>
 
Note that the above is a [[root of unity]], that is, it squares to 1.  Consequently, we can make a [[projection operator]] from it that projects out the sub-algebra of the Dirac algebra that has spin oriented in the (a, b, c) direction:
 
:<math>P_{(a,b,c)} = \frac{1}{2}\left(1 + \sigma_{(a,b,c)}\right)</math>
 
Now we must choose a charge, +1 (positron) or −1 (electron). Following the conventions of Peskin & Schroeder, the operator for charge is <math>\scriptstyle Q \,=\, -\gamma^0</math>, that is, electron states will take an eigenvalue of −1 with respect to this operator while positron states will take an eigenvalue of +1.
 
Note that <math>\scriptstyle Q</math> is also a square root of unity. Furthermore, <math>\scriptstyle Q</math> commutes with <math>\scriptstyle\sigma_{(a, b, c)}</math>.  They form a [[complete set of commuting operators]] for the Dirac algebra.  Continuing with our example, we look for a representation of an electron with spin in the (a, b, c) direction.  Turning <math>\scriptstyle Q</math> into a projection operator for charge = −1, we have
 
:<math>P_{-Q} = \frac{1}{2}\left(1 - Q\right) = \frac{1}{2}\left(1 + \gamma^0\right)</math>
 
The projection operator for the spinor we seek is therefore the product of the two projection operators we've found:
 
:<math>P_{(a, b, c)}\;P_{-Q}</math>
 
The above projection operator, when applied to any spinor, will give that part of the spinor that corresponds to the electron state we seek. So we can apply it to a spinor with the value 1 in one of its components, and 0 in the others, which gives a column of the matrix. Continuing the example, we put (a, b, c) = (0, 0, 1) and have
 
:<math>P_{(0, 0, 1)} = \frac{1}{2}\left(1+ i\gamma_1\gamma_2\right)</math>
 
and so our desired projection operator is
 
:<math>P = \frac{1}{2}\left(1+ i\gamma^1\gamma^2\right) \cdot \frac{1}{2}\left(1 + \gamma^0\right) =
\frac{1}{4}\left(1+\gamma^0 +i\gamma^1\gamma^2 + i\gamma^0\gamma^1\gamma^2\right)</math>
 
The 4×4 gamma matrices used in the Weyl representation are
 
:<math>\gamma_0 = \begin{bmatrix}0&1\\1&0\end{bmatrix}</math>
:<math>\gamma_k = \begin{bmatrix}0&\sigma^k\\ -\sigma^k& 0\end{bmatrix}</math>
 
for k = 1, 2, 3  and where <math>\sigma^i</math> are the usual 2×2 [[Pauli matrices]]. Substituting these in for P gives
 
:<math>P = \frac14\begin{bmatrix}1+\sigma^3&1+\sigma^3\\1+\sigma^3&1+\sigma^3\end{bmatrix}
=\frac12\begin{bmatrix}1&0&1&0\\0&0&0&0\\ 1&0&1&0\\0&0&0&0\end{bmatrix}</math>
 
Our answer is any non-zero column of the above matrix. The division by two is just a normalization.  The first and third columns give the same result:
 
:<math>\left|e^-,\, +\frac12\right\rangle =  
\begin{bmatrix}1\\0\\1\\0\end{bmatrix}</math>
 
More generally, for electrons and positrons with spin oriented in the (a, b, c) direction, the projection operator is
 
:<math>\frac14\begin{bmatrix}
1+c&a-ib&\pm (1+c)&\pm(a-ib)\\
a+ib&1-c&\pm(a+ib)&\pm (1-c)\\
\pm (1+c)&\pm(a-ib)&1+c&a-ib\\
\pm(a+ib)&\pm (1-c)&a+ib&1-c
\end{bmatrix}</math>
 
where the upper signs are for the electron and the lower signs are for the positron. The corresponding spinor can be taken as any non zero column. Since <math>\scriptstyle a^2+b^2+c^2 \,=\, 1</math> the different columns are multiples of the same spinor. The representation of the resulting spinor in the [[Gamma matrices#Dirac basis|Dirac basis]] can be obtained using the rule given in the [[bispinor]] article.
 
==See also==
*[[Dirac equation]]
*[[Helicity Basis]]
*[[Spin(3,1)]], the [[double cover]] of [[SO(3,1)]] by a [[spin group]]
 
==References==
*{{cite book
  | last = Aitchison
  | first = I.J.R.
  | authorlink =
  | coauthors = A.J.G. Hey
  | title = Gauge Theories in Particle Physics (3rd ed.)
  | publisher = Institute of Physics Publishing
  |date=September 2002
  | location =
  | pages =
  | url =
  | doi =
  | isbn = 0-7503-0864-8 }}
* {{Cite web
  | first = David
  | last = Miller
  | title = Relativistic Quantum Mechanics (RQM)
  | year = 2008
  | pages = 26–37
  | url = http://www.physics.gla.ac.uk/~dmiller/lectures/RQM_2008.pdf
  | postscript = <!--None-->
}}
 
[[Category:Quantum mechanics]]
[[Category:Quantum field theory]]
[[Category:Spinors]]
[[Category:Paul Dirac|Spinor]]

Latest revision as of 18:46, 16 December 2014


Son is what is created on my start certification and I fully appreciate this identify. My working day job is a hotel receptionist. My friends say it is really not good for me but what I love carrying out is gardening but I am contemplating on starting up anything new. Colorado is the location I really like most. I am running and keeping a blog right here: http://bigdata.ihep.ac.cn/bigdata/view_profile.php?userid=1155931

Also visit my website ... Underwear Calvin Klein