Main Page: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
No edit summary
No edit summary
 
(477 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
In [[mathematics]], a '''Dirichlet problem''' is the problem of finding a [[function (mathematics)|function]] which solves a specified [[partial differential equation]] (PDE) in the interior of a given region that takes prescribed values on the boundary of the region.
This is a preview for the new '''MathML rendering mode''' (with SVG fallback), which is availble in production for registered users.


The Dirichlet problem can be solved for many PDEs, although originally it was posed for [[Laplace's equation]]. In that case the problem can be stated as follows:
If you would like use the '''MathML''' rendering mode, you need a wikipedia user account that can be registered here [[https://en.wikipedia.org/wiki/Special:UserLogin/signup]]
* Only registered users will be able to execute this rendering mode.
* Note: you need not enter a email address (nor any other private information). Please do not use a password that you use elsewhere.


:Given a function ''f'' that has values everywhere on the boundary of a region in '''R'''<sup>''n''</sup>, is there a unique [[continuous function]] ''u'' twice continuously differentiable in the interior and continuous on the boundary, such that ''u'' is [[harmonic function|harmonic]] in the interior and ''u''&nbsp;=&nbsp;''f'' on the boundary?
Registered users will be able to choose between the following three rendering modes:  


This requirement is called the [[Dirichlet boundary condition]].  The main issue is to prove the existence of a solution; uniqueness can be proved using the [[maximum principle]].
'''MathML'''
:<math forcemathmode="mathml">E=mc^2</math>


==History==
<!--'''PNG''' (currently default in production)
The '''Dirichlet problem''' is named after [[Johann Peter Gustav Lejeune Dirichlet|Lejeune Dirichlet]], who proposed a solution by a variational method which became known as [[Dirichlet's principle]]. The existence of a unique solution is very plausible by the 'physical argument': any charge distribution on the boundary should, by the laws of [[electrostatics]], determine an [[electrical potential]] as solution.
:<math forcemathmode="png">E=mc^2</math>


However, [[Weierstrass]] found a flaw in Dirichlet's argument, and a rigorous proof of existence was found only in 1900 by [[David Hilbert|Hilbert]]. It turns out that the existence of a solution depends delicately on the smoothness of the boundary and the prescribed data.
'''source'''
:<math forcemathmode="source">E=mc^2</math> -->


== General solution ==
<span style="color: red">Follow this [https://en.wikipedia.org/wiki/Special:Preferences#mw-prefsection-rendering link] to change your Math rendering settings.</span> You can also add a [https://en.wikipedia.org/wiki/Special:Preferences#mw-prefsection-rendering-skin Custom CSS] to force the MathML/SVG rendering or select different font families. See [https://www.mediawiki.org/wiki/Extension:Math#CSS_for_the_MathML_with_SVG_fallback_mode these examples].
For a domain <math>D</math> having a sufficiently smooth boundary <math>\partial D</math>, the general solution to the Dirichlet problem is given by 


:<math>u(x)=\int_{\partial D} \nu(s) \frac{\partial G(x,s)}{\partial n} ds</math>
==Demos==


where <math>G(x,y)</math> is the [[Green's function]] for the partial differential equation, and
Here are some [https://commons.wikimedia.org/w/index.php?title=Special:ListFiles/Frederic.wang demos]:


:<math>\frac{\partial G(x,s)}{\partial n} = \widehat{n} \cdot \nabla_s G (x,s) = \sum_i n_i \frac{\partial G(x,s)}{\partial s_i}</math>


is the derivative of the Green's function along the inward-pointing unit normal vector <math>\widehat{n}</math>. The integration is performed on the boundary, with [[Measure (mathematics)|measure]] <math>ds</math>. The function <math>\nu(s)</math> is given by the unique solution to the [[Fredholm integral equation]] of the second kind,
* accessibility:
** Safari + VoiceOver: [https://commons.wikimedia.org/wiki/File:VoiceOver-Mac-Safari.ogv video only], [[File:Voiceover-mathml-example-1.wav|thumb|Voiceover-mathml-example-1]], [[File:Voiceover-mathml-example-2.wav|thumb|Voiceover-mathml-example-2]], [[File:Voiceover-mathml-example-3.wav|thumb|Voiceover-mathml-example-3]], [[File:Voiceover-mathml-example-4.wav|thumb|Voiceover-mathml-example-4]], [[File:Voiceover-mathml-example-5.wav|thumb|Voiceover-mathml-example-5]], [[File:Voiceover-mathml-example-6.wav|thumb|Voiceover-mathml-example-6]], [[File:Voiceover-mathml-example-7.wav|thumb|Voiceover-mathml-example-7]]
** [https://commons.wikimedia.org/wiki/File:MathPlayer-Audio-Windows7-InternetExplorer.ogg Internet Explorer + MathPlayer (audio)]
** [https://commons.wikimedia.org/wiki/File:MathPlayer-SynchronizedHighlighting-WIndows7-InternetExplorer.png Internet Explorer + MathPlayer (synchronized highlighting)]
** [https://commons.wikimedia.org/wiki/File:MathPlayer-Braille-Windows7-InternetExplorer.png Internet Explorer + MathPlayer (braille)]
** NVDA+MathPlayer: [[File:Nvda-mathml-example-1.wav|thumb|Nvda-mathml-example-1]], [[File:Nvda-mathml-example-2.wav|thumb|Nvda-mathml-example-2]], [[File:Nvda-mathml-example-3.wav|thumb|Nvda-mathml-example-3]], [[File:Nvda-mathml-example-4.wav|thumb|Nvda-mathml-example-4]], [[File:Nvda-mathml-example-5.wav|thumb|Nvda-mathml-example-5]], [[File:Nvda-mathml-example-6.wav|thumb|Nvda-mathml-example-6]], [[File:Nvda-mathml-example-7.wav|thumb|Nvda-mathml-example-7]].
** Orca: There is ongoing work, but no support at all at the moment [[File:Orca-mathml-example-1.wav|thumb|Orca-mathml-example-1]], [[File:Orca-mathml-example-2.wav|thumb|Orca-mathml-example-2]], [[File:Orca-mathml-example-3.wav|thumb|Orca-mathml-example-3]], [[File:Orca-mathml-example-4.wav|thumb|Orca-mathml-example-4]], [[File:Orca-mathml-example-5.wav|thumb|Orca-mathml-example-5]], [[File:Orca-mathml-example-6.wav|thumb|Orca-mathml-example-6]], [[File:Orca-mathml-example-7.wav|thumb|Orca-mathml-example-7]].
** From our testing, ChromeVox and JAWS are not able to read the formulas generated by the MathML mode.


:<math>f(x) = -\frac{\nu(x)}{2} + \int_{\partial D} \nu(s) \frac{\partial G(x,s)}{\partial n} ds.</math>
==Test pages ==


The Green's function to be used in the above integral is one which vanishes on the boundary:
To test the '''MathML''', '''PNG''', and '''source''' rendering modes, please go to one of the following test pages:
*[[Displaystyle]]
*[[MathAxisAlignment]]
*[[Styling]]
*[[Linebreaking]]
*[[Unique Ids]]
*[[Help:Formula]]


:<math>G(x,s)=0</math>
*[[Inputtypes|Inputtypes (private Wikis only)]]
 
*[[Url2Image|Url2Image (private Wikis only)]]
for <math>s\in \partial D</math> and <math>x\in D</math>. Such a Green's function is usually a sum of the free-field Green's function and a harmonic solution to the differential equation.
==Bug reporting==
 
If you find any bugs, please report them at [https://bugzilla.wikimedia.org/enter_bug.cgi?product=MediaWiki%20extensions&component=Math&version=master&short_desc=Math-preview%20rendering%20problem Bugzilla], or write an email to math_bugs (at) ckurs (dot) de .
===Existence===
The Dirichlet problem for harmonic functions always has a solution, and that solution is unique, when the boundary is sufficiently smooth and <math>f(s)</math> is continuous. More precisely, it has a solution when
 
:<math>\partial D \in C^{(1,\alpha)}</math>
 
for <math>0<\alpha</math>, where <math>C^{(1,\alpha)}</math> denotes the [[Hölder condition]].
 
== Example: the unit disk in two dimensions ==
In some simple cases the Dirichlet problem can be solved explicitly.  For example, the solution to the Dirichlet problem for the unit disk in '''R'''<sup>2</sup> is given by the [[Poisson integral formula]].
 
If <math>f</math> is a continuous function on the boundary <math>\partial D</math> of the open unit disk <math>D</math>, then the solution to the Dirichlet problem is <math>u(z)</math> given by
 
:<math>u(z) = \begin{cases} \frac{1}{2\pi}\int_0^{2\pi} f(e^{i\psi})
\frac {1-\vert z \vert ^2}{\vert 1-ze^{-i\psi}\vert ^2} d \psi & \mbox{if }z \in D \\
f(z) & \mbox{if }z \in \partial D. \end{cases}</math>
 
The solution <math>u</math> is continuous on the closed unit disk <math>\bar{D}</math> and harmonic on <math>D.</math>
 
The integrand is known as the [[Poisson kernel]]; this solution follows from the Green's function in two dimensions:
 
:<math>G(z,x) = -\frac{1}{2\pi} \log \vert z-x\vert + \gamma(z,x)</math>
 
where <math>\gamma(z,x)</math> is harmonic
 
:<math>\Delta_x \gamma(z,x)=0</math>
 
and chosen such that <math>G(z,x)=0</math> for <math>x\in \partial D</math>.
==Methods of solution==
For bounded domains, the Dirichlet problem can be solved using the [[Perron method]], which relies on the [[maximum principle]] for [[subharmonic function]]s. This approach is described in many text books.<ref> See for example:
*{{harvnb|John|1982}}
*{{harvnb|Bers|John|Schechter|1979}}
*{{harvnb|Greene|Krantz|2006}}
</ref> It is not well-suited to describing smoothness of solutions when the boundary is smooth. Another classical [[Hilbert space]] approach through [[Sobolev space]]s does yield such information.<ref> See for example:
*{{harvnb|Bers|John|Schechter|1979}}
*{{harvnb|Chazarain|Piriou|1982}}
*{{harvnb|Taylor|2011}}
</ref> The solution of the Dirichlet problem using [[Sobolev spaces for planar domains]] can be used to prove the smooth version of the [[Riemann mapping theorem]]. {{harvtxt|Bell|1992}} has outlined a different approach for establishing the smooth Riemann mapping theorem, based on the [[reproducing kernel]]s of Szegő and Bergman, and in turn used it to solve the Dirichlet problem. The classical methods of [[potential theory]] allow the Dirichlet problem to be solved directly in terms of [[integral operator]]s, for which the standard theory of [[compact operator|compact]] and [[Fredholm operator]]s is applicable. The same methods work equally for the [[Neumann problem]].
<ref>See:
*{{harvnb|Folland|1995}}
*{{harvnb|Bers|John|Schechter|1979}}</ref>
 
==Generalizations==
Dirichlet problems are typical of [[elliptic partial differential equation]]s, and [[potential theory]], and the [[Laplace equation]] in particular. Other examples include the [[biharmonic equation]] and related equations in [[elasticity theory]].
 
They are one of several types of classes of PDE problems defined by the information given at the boundary, including [[Neumann problem]]s and [[Cauchy problem]]s.
 
==Notes==
{{reflist|2}}
 
==References==
* {{springer|author=A. Yanushauskas|id=d/d032910|title=Dirichlet problem}}
* S. G. Krantz, ''The Dirichlet Problem.''  §7.3.3 in ''Handbook of Complex Variables''. Boston, MA: Birkhäuser, p. 93, 1999. ISBN 0-8176-4011-8.
* S. Axler, P. Gorkin, K. Voss, ''[http://www.ams.org/mcom/2004-73-246/S0025-5718-03-01574-6/home.html The Dirichlet problem on quadratic surfaces]'' Mathematics of Computation '''73''' (2004), 637-651.
*{{Citation | last1=Gilbarg | first1=David | last2=Trudinger | first2=Neil S. | author2-link=Neil Trudinger | title=Elliptic partial differential equations of second order | publisher=[[Springer-Verlag]] | location=Berlin, New York | edition=2nd | isbn=978-3-540-41160-4 | year=2001}}
*Gérard, Patrick; [[Eric Leichtnam|Leichtnam, Éric]]: Ergodic properties of eigenfunctions for the Dirichlet problem. Duke Math. J. 71 (1993), no. 2, 559-607.
*{{citation|last=John|first= Fritz|title=Partial differential equations|edition=4th|series= Applied Mathematical Sciences|volume= 1|publisher= Springer-Verlag|year= 1982|id= ISBN 0-387-90609-6}}
*{{citation|last=Bers|first=Lipman|last2=John|first2=Fritz|last3= Schechter|first3= Martin|title=Partial differential equations, with supplements by Lars Gȧrding and A. N. Milgram|series= Lectures in Applied Mathematics|volume= 3A|publisher= American Mathematical Society|year=1979|id=ISBN 0-8218-0049-3}}
*{{citation|title=Lectures on Elliptic Boundary Value Problems|first=Shmuel|last= Agmon|authorlink=Shmuel Agmon|year=2010|publisher=American Mathematical Society|id=ISBN 0-8218-4910-7}}
* {{citation|first=Elias M.|last= Stein|authorlink=Elias Stein|year=1970|title=Singular Integrals and Differentiability Properties of Functions|publisher=Princeton University Press}}
*{{citation|last=Greene|first= Robert E.|last2= Krantz|first2= Steven G.|title= Function theory of one complex variable|edition=3rd|series= Graduate Studies in Mathematics|volume= 40|publisher= American Mathematical Society|year= 2006|id= ISBN 0-8218-3962-4}}
*{{citation| last=Taylor|first= Michael E.|title= Partial differential equations I. Basic theory|edition=2nd |series= Applied Mathematical Sciences|volume= 115|publisher=Springer|year=2011|id= ISBN 978-1-4419-70}}
*{{citation|last=Zimmer|first= Robert J.|title= Essential results of functional analysis|series= Chicago Lectures in Mathematics|publisher= University of Chicago Press|year= 1990|id= ISBN 0-226-98337-4}}
*{{citation|last=Folland|first= Gerald B.|title= Introduction to partial differential equations|edition=2nd|publisher=Princeton University Press|year=1995|id= ISBN 0-691-04361-2}}
*{{citation|title=Introduction to the Theory of Linear Partial Differential Equations|volume=14|series= Studies in Mathematics and Its Applications|first=Jacques|last= Chazarain|first2= Alain|last2= Piriou|publisher=Elsevier|year= 1982|id=ISBN 0444864520}}
*{{citation|last=Bell|first=Steven R.|title= The Cauchy transform, potential theory, and conformal mapping|series= Studies in Advanced Mathematics|publisher= CRC Press|year= 1992|id=ISBN 0-8493-8270-X}}
*{{citation|title=Foundations of Differentiable Manifolds and Lie Groups|series=Graduate Texts in Mathematics|volume= 94|year=1983|
first=Frank W.|last= Warner|id=ISBN 0387908943|publisher=Springer}}
*{{citation|title=Principles of Algebraic Geometry|first=Phillip |last=Griffiths|first2= Joseph|last2= Harris|publisher= Wiley Interscience| year=1994|id=ISBN  0471050598}}
*{{citation|last=Courant|first= R.|title=Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces|
publisher=Interscience|year= 1950}}
*{{citation|last=Schiffer|first= M.|last2=Hawley|first2= N. S.|title=Connections and conformal mapping|journal=
Acta Math.|volume= 107|year= 1962|pages= 175–274}}
 
== External links ==
* {{MathWorld | urlname=DirichletProblem | title=Dirichlet Problem}}
* [http://math.fullerton.edu/mathews/c2003/DirichletProblemMod.html Dirichlet Problem Module by John H. Mathews]
 
[[Category:Potential theory]]
[[Category:Partial differential equations]]
[[Category:Fourier analysis]]
[[Category:Mathematical problems]]
 
[[ca:Problema de Dirichlet]]
[[es:Problema de Dirichlet]]
[[fr:Problème de Dirichlet]]
[[ko:디리클레 문제]]
[[ja:ディリクレ問題]]
[[pms:Problema ëd Dirichlet]]
[[pl:Problem Dirichleta]]
[[pt:Problema de Dirichlet]]
[[ru:Задача Дирихле]]
[[tr:Dirichlet problemi]]
[[zh:狄利克雷问题]]

Latest revision as of 23:52, 15 September 2019

This is a preview for the new MathML rendering mode (with SVG fallback), which is availble in production for registered users.

If you would like use the MathML rendering mode, you need a wikipedia user account that can be registered here [[1]]

  • Only registered users will be able to execute this rendering mode.
  • Note: you need not enter a email address (nor any other private information). Please do not use a password that you use elsewhere.

Registered users will be able to choose between the following three rendering modes:

MathML


Follow this link to change your Math rendering settings. You can also add a Custom CSS to force the MathML/SVG rendering or select different font families. See these examples.

Demos

Here are some demos:


Test pages

To test the MathML, PNG, and source rendering modes, please go to one of the following test pages:

Bug reporting

If you find any bugs, please report them at Bugzilla, or write an email to math_bugs (at) ckurs (dot) de .