Orthogonal coordinates: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>F=q(E+v^B)
→‎Differential operators in three dimensions: links, tabulate to remove tiresome repetition "the ... equals" in text, fix "of a vector/scalar" to "of a vector/scalar field", scalar/vector is not the same as scalar/vector field
 
→‎Differential operators in three dimensions: Add boldface on vector quantity
Line 1: Line 1:
Hello. Let me introduce the author. Her title is Emilia Shroyer but it's not the most female name out there. Her family members lives in Minnesota. One of home [http://Www.10news.com/news/free-home-std-test-kits-offered-by-the-county-of-san-diego-09042013 std test] the extremely very best issues in [http://spermdonorinfo.co.uk/groups/eliminate-a-yeast-infection-with-one-of-these-tips/ over the counter std test] globe for him is to collect badges but he is having difficulties to discover time for it. Managing people has been his day job for a whilst.<br><br>std testing at [http://www.gaysphere.net/user/KJGI home std test] Also visit my web blog: [http://Rivoli.enaiponline.com/user/view.php?id=438251&course=1 http://Rivoli.enaiponline.com/user/view.php?id=438251&course=1]
[[File:Bipolar cylindrical coordinates.png|thumb|350px|right|[[Coordinate system#Coordinate surface|Coordinate surfaces]] of the bipolar cylindrical coordinates. The yellow crescent corresponds to σ, whereas the red tube corresponds to τ and the blue plane corresponds to ''z''=1.  The three surfaces intersect at the point '''P''' (shown as a black sphere).]]
 
'''Bipolar cylindrical coordinates''' are a three-dimensional [[orthogonal coordinates|orthogonal]] [[coordinate system]] that results from projecting the two-dimensional [[bipolar coordinates|bipolar coordinate system]] in the
perpendicular <math>z</math>-direction. The two lines of [[Focus (geometry)|foci]]
<math>F_{1}</math> and <math>F_{2}</math> of the projected [[Apollonian circles]] are generally taken to be
defined by <math>x=-a</math> and <math>x=+a</math>, respectively, (and by <math>y=0</math>) in the [[Cartesian coordinate system]].
 
The term "bipolar" is often used to describe other curves having two singular points (foci), such as [[ellipse]]s, [[hyperbola]]s, and [[Cassini oval]]s.  However, the term ''bipolar coordinates'' is never used to describe coordinates associated with those curves, e.g., [[elliptic coordinates]].
 
==Basic definition==
 
The most common definition of bipolar cylindrical coordinates <math>(\sigma, \tau, z)</math> is
 
:<math>
x = a \ \frac{\sinh \tau}{\cosh \tau - \cos \sigma}
</math>
 
:<math>
y = a \ \frac{\sin \sigma}{\cosh \tau - \cos \sigma}
</math>
 
:<math>
z = \ z
</math>
 
where the <math>\sigma</math> coordinate of a point <math>P</math>
equals the angle <math>F_{1} P F_{2}</math> and the
<math>\tau</math> coordinate equals the [[natural logarithm]] of the ratio of the distances <math>d_{1}</math> and <math>d_{2}</math> to the focal lines
 
:<math>
\tau = \ln \frac{d_{1}}{d_{2}}
</math>
 
(Recall that the focal lines <math>F_{1}</math> and <math>F_{2}</math> are located at <math>x=-a</math> and <math>x=+a</math>, respectively.)
 
Surfaces of constant <math>\sigma</math> correspond to cylinders of different radii
 
:<math>
x^{2} +
\left( y - a \cot \sigma \right)^{2} = \frac{a^{2}}{\sin^{2} \sigma}
</math>
 
that all pass through the focal lines and are not concentric.  The surfaces of constant <math>\tau</math> are non-intersecting cylinders of different radii
 
:<math>
y^{2} +
\left( x - a \coth \tau \right)^{2} = \frac{a^{2}}{\sinh^{2} \tau}
</math>
 
that surround the focal lines but again are not concentric.  The focal lines and all these cylinders are parallel to the <math>z</math>-axis (the direction of projection).  In the <math>z=0</math> plane, the centers of the constant-<math>\sigma</math> and constant-<math>\tau</math> cylinders lie on the <math>y</math> and <math>x</math> axes, respectively.
==Scale factors==
 
The scale factors for the bipolar coordinates <math>\sigma</math> and  <math>\tau</math> are equal
 
:<math>
h_{\sigma} = h_{\tau} = \frac{a}{\cosh \tau - \cos\sigma}
</math>
 
whereas the remaining scale factor <math>h_{z}=1</math>.
Thus, the infinitesimal volume element equals
 
:<math>
dV = \frac{a^{2}}{\left( \cosh \tau - \cos\sigma \right)^{2}} d\sigma d\tau dz
</math>
 
and the Laplacian is given by
 
:<math>
\nabla^{2} \Phi =
\frac{1}{a^{2}} \left( \cosh \tau - \cos\sigma \right)^{2}
\left(
\frac{\partial^{2} \Phi}{\partial \sigma^{2}} +
\frac{\partial^{2} \Phi}{\partial \tau^{2}}
\right) +
\frac{\partial^{2} \Phi}{\partial z^{2}}
</math>
 
Other differential operators such as <math>\nabla \cdot \mathbf{F}</math>
and <math>\nabla \times \mathbf{F}</math> can be expressed in the coordinates <math>(\sigma, \tau)</math> by substituting
the scale factors into the general formulae
found in [[orthogonal coordinates]].
 
==Applications==
The classic applications of bipolar coordinates are in solving [[partial differential equations]],
e.g., [[Laplace's equation]] or the [[Helmholtz equation]], for which bipolar coordinates allow a
[[separation of variables]]. A typical example would be the [[electric field]] surrounding two
parallel cylindrical conductors.
 
==Bibliography==
*{{cite book | author = [[Henry Margenau|Margenau H]], Murphy GM | year = 1956 | title = The Mathematics of Physics and Chemistry | publisher = D. van Nostrand | location = New York | pages = 187&ndash;190 | lccn = 5510911 }}
*{{cite book | author = Korn GA, Korn TM |year = 1961 | title = Mathematical Handbook for Scientists and Engineers | publisher = McGraw-Hill | location = New York | id = ASIN B0000CKZX7 | page = 182 | lccn = 5914456}}
*{{cite book | author = Moon P, Spencer DE | year = 1988 | chapter = Conical Coordinates (r, θ, λ) | title = Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions | edition = corrected 2nd ed., 3rd print | publisher = Springer-Verlag | location = New York | isbn = 978-0-387-18430-2 | nopp = true | page = unknown}}
 
==External links==
*[http://mathworld.wolfram.com/BipolarCylindricalCoordinates.html MathWorld description of bipolar cylindrical coordinates]
 
{{Orthogonal coordinate systems}}
 
[[Category:Coordinate systems]]

Revision as of 20:12, 20 December 2013

Coordinate surfaces of the bipolar cylindrical coordinates. The yellow crescent corresponds to σ, whereas the red tube corresponds to τ and the blue plane corresponds to z=1. The three surfaces intersect at the point P (shown as a black sphere).

Bipolar cylindrical coordinates are a three-dimensional orthogonal coordinate system that results from projecting the two-dimensional bipolar coordinate system in the perpendicular -direction. The two lines of foci and of the projected Apollonian circles are generally taken to be defined by and , respectively, (and by ) in the Cartesian coordinate system.

The term "bipolar" is often used to describe other curves having two singular points (foci), such as ellipses, hyperbolas, and Cassini ovals. However, the term bipolar coordinates is never used to describe coordinates associated with those curves, e.g., elliptic coordinates.

Basic definition

The most common definition of bipolar cylindrical coordinates is

where the coordinate of a point equals the angle and the coordinate equals the natural logarithm of the ratio of the distances and to the focal lines

(Recall that the focal lines and are located at and , respectively.)

Surfaces of constant correspond to cylinders of different radii

that all pass through the focal lines and are not concentric. The surfaces of constant are non-intersecting cylinders of different radii

that surround the focal lines but again are not concentric. The focal lines and all these cylinders are parallel to the -axis (the direction of projection). In the plane, the centers of the constant- and constant- cylinders lie on the and axes, respectively.

Scale factors

The scale factors for the bipolar coordinates and are equal

whereas the remaining scale factor . Thus, the infinitesimal volume element equals

and the Laplacian is given by

Other differential operators such as and can be expressed in the coordinates by substituting the scale factors into the general formulae found in orthogonal coordinates.

Applications

The classic applications of bipolar coordinates are in solving partial differential equations, e.g., Laplace's equation or the Helmholtz equation, for which bipolar coordinates allow a separation of variables. A typical example would be the electric field surrounding two parallel cylindrical conductors.

Bibliography

  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534

External links

Template:Orthogonal coordinate systems